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A. Foreword.

In this report it has been sttempted to cover the main themes of th
producing an optimal coqtrol synthesis procedure at Aeronca.

Before describing the presentation, attention should be called to the highlights
of this report. In Chapter 3, very recent work actually leading to a "rational"
synthesis procedure is discussed. What had previously'been a theory largely serving
as guidance for a sharper intuition, now for the first time comes into its 'own as with an
algorithm for producing a"closed form"control law. In view of the optimistic comments on the
possibilities that this step wunfolds to say nothing of the pessimism voiced as to
the possibility of ever generating such a "closed form", the chapter deserves special
reading. Having actual samples of the "closed form" in hand, brings much more clearly
into focus the possibilities - not the least of which is further work - that it affords.
In any case, a lot more is known.

Another source_@f insight will be having a number of trajectories in hand. Work
along this line has been directed toward developing a computing procedure that will make
these trajectories amenable without undue computing time. This effort is covered in
Sections k.4 and h;é, where a novel approach taking advantage of the possibility of a
steepest descent approach is developed.

Turning now to the body of the report. The first two chapters are given over to
developing an understanding of the theory of optimal control. The first chapter dis-
cusses the background while the second chapter gives a detailed account of the theory
with examples of the generality where it is shown that other criteria than time optimal
are also treated by the general theory. In Chapter 3, a theory that actually computes
switching surfaces in developed. To our knowledge, these results are presented for the
first time here. Chapter L gives a presentation of the adjoint system approach as a
synthesis and investigation technigue. The following chapter covers some preliminary

thoughts on the procedure by which the approaches for Chapter 4 might be realized in



hardware configurations expressly designed as control computers. In Chapter 6,
applications to real plants are discussed. It might be mentioned here that not the least
of these applications is to the control of the Saturn, which is a central theme of the
work here, and that this work is currently being reported in reports under contract
NAS8-5002. Finally there are three appendices being devoted to outlining the algorithm
for computing trajectories, giving in order the algebra required, an outline of the
steps of a computer program that will effect this algebra and finally a statements of
this program in FORTRAN langusge.

It is to be noted that a wide approach to the synthesis problem has been taken
here. Admittedly at this stage a certain disjointedness in the seperate developments
exists. To have not broached the problem over this breadth would certainly have led
to oversights in the approach, which is to develop a straightforward optimal control
synthesis technique. It is expected that as the results flowin the approach will show
a more unified viewpoint. Certainly, very material beginnings of this trend are already

to be observed.
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1.0 INTRODUCTION AND BACKGROUND

In order to introduce the subject of time-optimal control, we shall summarize briefly
the salient facts about what seems to be the simplest possible example.

Consider an axially symmetric mass, with unit moment of inertia, free to rotate
frictionlessly about its axis of symmetry. (This is a fairly good representation of the
problem of controlling the roll of a space vehicle). Let 6 denote the angle between a
radial line fixed in the body, and a radial line fixed in inertial space, and suppose that
it is desired to bring the angle 6 té zero., (Figure 1.1).

As usual, let 6 denote the rate of change of 6, or the angular velocity of the

body, i.e.,

(1) 6 = ao/at.

Suppose that it is possible to measure O and 6 at each instant of time t, and
suppose that it is desired to apply & controlling torque ¥ = (8, 8) in accordance with
some prespecified depéndence on the instantaneous state (9, é) of the body. Suppose

finally that themaximum torque available is unity. i.e.,

(2) -1 s 7(6, 6) s + 1.

Then, according to the well known principles of mechanics, the state (6(t), 8(t))

of -the body will evolve in a manner determined by the differential equation

(3) G -6, 8), 600) =6, B(0) =8, |y] =1



The problem of synthesis of a control system for the body is thus reduced to the

choice of the control function 7(6, 8).

One possible control function is

(&) y = -sgn(6 + X8), X >o0.

After a finite number of changes of sign, the system (3-4) reaches a state where the

only choice of 7y consistent with the physically necessary semi-continuity of 6, i.e.,

(5) 6(t +0) = 8(¢),

is 7 =0 forall tzT, >0, This state (9*, é*), first realized by Flugge-Lotz and
Klotter [1], is called an end-state; subseguently there are compelling physical reasons,
first proved by Andre and Seibert [2], for extending the model (3-5) by the lower-order

differential equation

(6) . 6+ (1/x)6 =0, 6{(0)=28,, 6(0) =29, .

It can be seen from the example in Figure 1.2 that, in general, several'overshoots!
will occur before the motion at last decays exponentially to rest.
Within the past decade it has been realized that it is possible to effect a drastic

improvement in the performence of the control system defined by (4). In fact, if the con-

trol function

(7) 7 = -sgn(6 + £6(6])

be used, then the body will always come to rest in the desired attitude in & finite length

.



of time T, after at most one change of sign of the controlling torque. Moreover, it

has been proved (cf. [3], [4], [5]) that no control function satisfying (2) can bring the

body to rest in a time less than T.

This is because the control (7) anticipates the future evolution of the motion and
reverses the torque at precisely the time when otherwise unnecessary energy would be
added to the body and it would be impossible for & unit torque to halt the motion before
at least one overshoot had occurred.

Now virtually all engineering systems of practical interest have more than two degrees
of freedom, and obey more complicated electromechanical equations than (3). Hence & theory
of time-optimal control for systems with arbitrarily many degrees of freedom and arbitrary
to exploit this concept as a practical sys-
tem synthesis procedure.

Here we shall attempt to present an introductory exposition to one such general theory,
including & statement of the present status of the theory, together with.some original re-

sults intended to bring the theory to the point of practical effectiveness.

1.1 DEFINITIONS AND STANDING ASSUMPTIONS.

Suppose that the instantaneous state of a certain electromechanical system can be

specified by a set of n numbers Xy Koy eoes Xoo

For brevity, we shall use vector notation$ +thus

!

(1.1) =l 2.

M oo

n
Henceforth the n-vector x will represent the state of the system in question. The

state of the system at time +t will be denoted by

-5 -



(1.2) x(t), (=00 <t <+ o00).

We assume that the known laws of physics govern the system's evolution in time, and

that these laws lead to an ordinary differential equation of the form

(1.3) k=TF(x), x(0)=x, (- =a/at),
where
Fl(x) Fl(xl,xz, ceey xn)
.. Fe(x) _ F?(xl,xe, ceny xn)
F;(x) ?;(xl,xz,..., xn)

is a vector-valued function, or !vector field! defined on the system's state-space.

Under very general conditions, there will correspond to each initial state x, &

solution of (1.3),

(1.4%) ’ x = X(t; xo)) (x(o3 XO) =x_),

o)

which is unique. The vector-function X is called the general solution of (1.5); it

satisfies the relation

(1.5) aX(t; x_)/ot = F(X(t; x,))

identically in the variables t and xO. If

(1.6) X(t; x ) = x

o o? (=00 <t <+ o),

then we call x_  an equilibrium state. Obviously, when (1.6) is inserted into (1.5)
-6 -




one finds that ox 0/51 =0 = F(xo_}, i.e., that x = x_  is an equilibrium state if and

only if
(1.7) F{x _j = Q.

c’

We consider here only those systems which have precisely one equilibrium state.

[In a preliminary analysis many systems can be represented by such a mathemstical model, at
the cost of slight over-idealisation. The effects of such a simplification can be investi-
gated later, after the broad features of the system have been fixed].

By an elementary change of variables, we can assume without loss of generality, and

henceforth we do assume, that the equilibrium state has the coordinates

(lo8) x1=X2 =: ®eo0 :ano’

i.e., that it is at the origin x = 0O of the state-space.

Thus we confine attention fo systems of tre form (1.3), subjected to the constraints

(1.9) F(0) =0,

(1.10) Fix) #C if x # C.

We shall call a dynamical system a control system if it has the property that regard-

less of its initial state the system's current state always evolves toward the equilibrium

state as time increases. In other words, regardless of X

(1.11) X(t; x ) »0 as + -+ oo.

In mathematical terminology, the system (1.3), {1.9), (1.10) represents a control

system if its equilibrium solution x = 0 is glcbally asymptotically stable.

_7_



If F(x) is a continuous vector field, then (1.11) represents the best control action

that can be obtained, namely, the system tends asymptotically to equilibrium; eventually

the system will be arbitrarily near to its equilibrium state, but this does not occur until
after the lapse of a corresponding arbitrarily large interval of time.
However, if F(x) is allowed to have discontinuities, then the situation is quite

different; in fact, it is then possible for the system's state to reach equilibrium in a

finite length of time.

Thus, instead of (1.11), we may consider the possibility that

(1.12) X(T; xo) =0, T-= T(xo) > 0.

By the general solution of (3) we now mean a function of the form (1.4) which is,

for each fixed x_, & continuous function of t, and satisfies (5) at all times

(1.13) by <t <ty (1=1,2 ...),

where the switching times {ti} form an unbounded monotone increasing sequence

. é LN ] < s e
(1.14) 0=t <t,< te <tpy < ;

(1.15) tj->+oo as j -+ oo.

Furthermore, denoting lim.k(tk +€), €>0, as € -0, by i(tk + 0), we require that

/

(1.16) i(tk +0) = k(tk), (k = 1,2, ..., ).

Thus we allow the graph of the curve X(t; xo) to have "sharp edges", i.e., discontinuities

in its tangent line, at the times t = tys (i=1,2,3, ... ), and we require "continuity

-8 -



on the right hand side" for this line,
Generally the designer of a control system will have certain elements of the system
at his disposal and others which are given and cannot be changed. An extremely common

situation is that in which F(x) = f(x) + Ke(x), where the vector field f(x) is given,

and where the linear vector function or matrix K = (Kﬁj; 1=1,...,n), (=2, ...,n))

is also given, but where the control function ¢ = c(x) is not known in advance.

Since no infinite forces or torques can be realized in a macroscopic physical system,
the components of the control function will necessarily be subjected to limitations of the
form lci(x)l sa,, (1=1,2,..., n), where the constants @5 G, .., @ are also
known in advance.

Without loss of generality, one can assume that each of the bounds ai =1 [for
otherwise replace ci(x) by ci(x) a, (1=1, ..., n) and replace K by the matrix KA,

where A = diag (al, Qpy eeey an).

1.2 STATEMENT OF THE PROBLEM

STABILITY PROBLEM. Given a control system of the form

(1.2.1) X = f(x) + Ke(x), £(0) = 0, x(0) = X

where f and K are specified in advance, can one choose & control function c(x),

subject only to the constraints

(1.2.2) 0s Ici(x)l 1, (1 =1,2, ..., n),

in such a way that the general solution X(t; xo) is well defined [as in (1.13)-(1.16),

except for states x at which c¢(x) is discontinuous], and satisfies (1.12) for every

admissable initial state xo .




TIME-OPTIMALITY PROBLEM. Supposing that the answer to the Stability Problem is

affirmative, can one choose a particular control function c = u(x), ]ui(x)] =1,

(i =1, ..., n), in such a way that, referring to (1.12), the transition times T(xo)

are always smaller than for any other stable control [i.e., more precisely, such that

(1.2.3) 0 < T(xy; (u(x)}) = (x5 {c(x)})

whenever {c(x)} is any stable control satisfying (1.2.1), (1.2.2) and 1.12)].

DEFINITION. By the transpose x¥* of a column vector

bl
X = .

\ *n/
we shall denote the row vector x¥ = (xl, Xpy oees xn). By the transpose K* of a square

matrix K = (Kij) = (kl’ Kyy eeey kn), where k, are the colum vectors of K, we shall

denote the matrix
K

(1.2.4) o - k3

e

that is, K* = (Kji) where now the rows and columns are transposed. By the Jacobian

mtrix f = of a vector function f we shall denote the matrix fx(x) = (afi/axj), i.e.,

(1.2.5) £ .(x) = (lgrad £, (x)1* ,..., [grad £ (x)]*)*,

where fi are the components of f, and where by the gradient grad ¢ of a scalar

function @(x) we denote the columm vector

- 10 -



l (1.2.6) 39/ 3,
op/3x,,

) Grad = .
| - 3/

n

In case ¢ = ¢(x, y) then we denote by grad, ¢ and grad, ¢ the results obtained by
) (x) (v)

considering, respectively, y and x as constants.

' DEFINITION. The scalar product x°*y of two n-vectors is given by

l (1.2.7) Xy =Ky Ry, t e+ Xy, = X%y = xy*

where the matricial formulation x*y corresponds to the usual rules of matrix multiplica~
tion, namely, if A = (al, Bay eee, an)* is a matrix whose rows are &%, (i = 1,2,...,n),

and if b is any n-vector, then

-

(1.2.8) Ab = (al*b, 8,*b, ..., an*b)* 3

and if B = (bl, by eees bn) is any matrix whose columns are bj*’ (3 = 1,2, ..., n),

then

(1.2.9) AB = (Abl, Aby, ..., Abn) = (ai*bj ).

DEFINITION. The length [|x|| of an n-vector x is defined to be

(1.2.10) Il = +Vxox = +\/—x12 + x22 +oau. + xn2 .

DEFINITION. If y is an n-vector, by sgn[y] we shall denote the vector

- 11 -




(1.2.11) sgn [yl = [ senly, ]
sgnly,] s

senly, ]
where by sgn[a] if o is a real scalar, one means
1, if a >0,

(1.2.12) sgn[a] =)0, if a =0,
-1, if a<o.

DEFINITION. By the exponential eA of a matrix A one denotes the clearly convergent

00
(1.2.13) Ao g A%/k:
k=0

where, as usual, O0J =1, and where by A° one denotes the identity matrix

(1.2.14) I = diag(l, 1, «e., 1).

Note that if A is a constant matrix, the general solution of the linear differential

equation

(1.2.15) X = Ax, x(0) = X
is given by x = X(t3 xo) where

(1.2.16) X = etAxo;

in fact, term-by-term differentiation of (1.2.,13) [which can be justified] shows that

- 12 -




tf A
(1.2.17) (™). = Aet ;

hence a&/at = AetAxo = Ax; and the proof is completed by noting that, from (1.2.13)
o]

e’ =1, whence X(0; xo) =Ix = X,

1.3 HISTORICAL, REMARKS

A special case of the Time-Optimality Problem which has been intensively studied is
that in which the given part of the system, f(x), is linear, i.e., f(x) =Ax, A = (Aij).
Then one considers the problem

(1.3.1) X = Ax + Ke, x(0) = X ]ci| 1, c(0)=o0.

This problem (1.3.1) was first studied in the case n = 2 by engineers such as

MecDonsld [6], Hammond and Uttley [7], and Feldbaum [8], and by such mathemsticians as

Bushaw [4], and LaSalle [5]. A summary of this work appears in Tsien’s book [3].

For arbitrary dimensions n the problem (29) was first considered by Rose [9],
Lerner [10], Feldbaum [11], and Krassovskii [12]. 1In 1955, an elegant partiml solution
to the problem was given by Bellman, Glicksberg and Gross [13]. They first considered
the problem of finding c¢ not as a function of X, but as a function of t [that is,
they considered "open loop" instead of "closed loop" or feedback control]. Their result

(slightly generalized) is that the system
~tA¥
(1.3.2) X = Ax + K sgn[K* e A yo], x(0) = X

is time-optimel whenever

(i) the vectors Ke®, AKel, ceo) An"lKel, (1 =1, ..., n) are linearly

independent, where ed are the fundamental unit vectors, that is,

I = (el, e?

n
n ’ IOB’ e )‘

- 13 -




(i1) for every X ”etAxOH -0 as t -+ w;

(iii) the vector Y, = g(xo) is chosen to correspond uniquely with x in &

certain manner.,

The condition (ii) is equivalent to the statement that all elgenvalues of A have negative
real parts, which can be ascertained by the Routh-Hurwitz Stability Criteria. Although
muich work has been devoted to the question (iii) (ef. [12], [1k], [15]) and, in principle,
effective methods for establishing the correspondence Y, = g(xo) are known, the practical
specification of the function g even for n =3 1is a very difficult matter.

Thus, when (i)-(iii) hold, the time-optimal control law for (30) has the form

N
(=]
AN
AN

N

Now, in general, if c(t; xo) represents the optimal control of (1.2.1) es & function

of time, then the optimal control u(x) must satisfy

(1.3.4) w(X(t; x,)) = ot x),

a statement which Bellman [16], [17] calls the Principle of Optimelity. Clearly, then,

u(xo) = u{X(0; xo)) = c(03 xo), and since this holds for arbitrary initial states x _,

one has

(1.3.5) u(x) = c(os x).

Applying this to the special case (1.3.3), one finds that for (1.3.1) the optimal

control is given by

-1k -




|

(1.3.6) u(x) = sgn{k*g(x)]

where g(x) is the same function of x that Y, 18, as a function of x_, in (1.3.2).

The results (1.3.2) and (1.3.3) are not stated explicitly in matrix notation in [13],

*

and in particular, it is not evident from [13] that c(ts xo) involves e-tA . However,

in 1955 R. Bass from the work of Bellman, Glicksberg and Gross , noted the results (1.303)-

(1.3.5) and made the following reformulation. Consider the system

(1.3.7) X = Ax + X sgn[k*y], x(0) = X
and its "adjoint system"
(1.3.8) y =A%y, y(0) =y ’

o]

as a simultaneous 2n-dimensional system. If the function g(x) has the property that for

each x_ #0 there isa T = T(xo) > 0 such that

(1.3.9) if y = g(xo) then X(T(xo); xo) = 0
then the system
(1.3.10) X = Ax + K sgn[k*g(x)], g(0) =0

is the time-optimal.

These published results (1.3.7);(1.3.8),(1.3.9),(1.3.10) in 1956 [18] explicitly

suggest that the adjoint system (1.3.8) can be used for numerical teblustion of the optimal

control law g(x) as follows.

- 15 -




Simulate the system (1.3.7)~(1.3.8) by means of analog or digital computer. For each
fixed X, Vary vy, until, by trial-and-error, a value g, iz found such that with
x(0) = X, y(0) = g, there isa T >0 such that X(Ty X go) = Q0. Then repeat for
8 different X e In this way a table of pairs (go, xo) can be constructed. But such
a table defines a function g(x) such that g(xo) = g, for every x_ ; and then (1.3.6)
gives the time-optimal control law.

To be sure, the preceding prescription represents a formidable task - clearly un-
feasible for very large velue of n. Nevertheless, drastic reductions in the amount of
computing can be made, as will be indicated later. Since 1956, well-known classical re-
sults about the Hamiltonian formulation of the Problem of Bolza, the Weierstrass E~Function,
and Hilbert’s Integral, and in particular the necessary meximelity of the Hamiltonian as
a function of ¢ have come to light. These lead at once to (1.3.7)-(1.3.8) [when trivial
modifications to allow for constraints of the form Ici] £ 1 rather than |ci| <1 are
made in the classical statements; cf., e.g., Caratheodory’s book [19] and Breakwell’s
paper [20]].

Independently, the same problem was considered in the USSR by Pontrjagin and his
collaeborators Gamkrelidze, Boltianskii, and Mishchenko. In 1956 Pontrjagin announced [22]
a conjecture regarding the time-optimality problem, and in 1957 and 1958 the conjecture was
proved true ([23], [24], [25]) under conditions of great generality. Their result, called
the Maximum Principle, contains the preceding results (1.3.7)-1.3.10) as a special case,

and generalizes them to a wide class of nonlinear systems.

1.4 FORMULATION OF THE MAXIMUM PRINCIPLE

DEFINITION. By En, or n-dimensional Euclidean space, we denote the set of all

n~vectors, X,y, ..., considered as the radius vectors of points, with the distance

between two points defined by means of the metric

- 16 -
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(1.4.1) e(0,y) = Ixyll,

where by ax + By, for arbiirary nuzbers o and B, one denotes the vector with com-
ponents Qx, * By,. The set of all points having radius vectors x such that o(x, xo) =

Hx»xOH <R is called the spherical neighborhocd of x, of radius R. A subset G of

En is open if each point g in G has some spherical neighborhood [so small that it can
be] entirely contained in G. A subset F is closed if its complement G = F© [i.e.,
the set of all points of E not in Fl is open. A set D is bounded if it is contained

in some [sufficiently large] spherical neighborhood of the origin.

THE MAXIMUM PRINCIPLE. Consider the nonlinear dynamical system

(1.4.2) X =f(x, ), x(0) = X s £{o, 0) =0

(1.4.3) x in G, ¢ in ¢ ({0,0) in G C).

. ; - 4!
where G 1is an open subset of En, and C 1s a closed and bounded subset of Es we

suppose that both fx and f_ are continuous functions of (x, c). Suppose that it is

desired to choose the control function ¢ = e(x} in such a way that it satisfies the con-

straint (1.4.3) and that the general solution of (1.3.2), X =Xx(t3 x 3 {c(x)}), is defined
B 5 J o b4 o ——— e e,

for all values of x, &t which c(xo) is continuous, and, for each fixed such x,, isa

continuous piece-wise differentisble function of + which satisfies X/t = £(X, c(X))

for all velues of t at which c(X(t3 xo)) is _continuous, and which, for every admissible

xo satisfies

(1.h4.4) X(T; x5 clxd ) =0

for some number T = T(xo; {u{x)}} >> 0. If now there is a “ime-optimal control function

¢ = u(x) such that

-17 -
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(1.4.5) o< T(XO; fu{x)i) = T(xog z(x) )
for all admissibie control functions {c¢{(xj}, then ({u(x)! mus satisfy the following

conditions. Define

(1.4.6) c

4 Vo I e o U P
xt3 X s 7 uXity X} [u{x)1)

define the scalar function

(1.4.7) ?=0(x, y5 c) =y £(x, c)s

and consider the Hamiltonian system

(1.4.8) x = grad(y)WE = £(x, c (%3 XO)): x(0) = X,
¢ = C*
(1.4.9) y = -grad/, \9| T T x Ny, y(0) =y
!@ = Cy
Then for each admissible X, there is a Yy = g(xo} such that the general solution
X(t3 xo) of (1.4.8) satisfies
(1.4.10) x(T, xO) =0

for some T > 0 and such that

(1.4.21) O = Pxys ¥3 (03 x )}z 0

while for 0=+t =T = T(x_)




(1.k.12) P(x(t), yiti5 e (t, x )) = 0(x(t), y(t)),

where, by definition, for all x in G and y in o

(1.4.13) o(x,y) = max ¢(x, y3 c).
¢ in C

Furthermore, for 0 s t = T(xo),

(1.4.1k) PUx(t), ¥(%); elt, x ) = P 2 0.

Fipally, as & consequence of (1.4.6) and (1.4.12), one has that, for Y, = g(xo),

(1.4.15a) (x(t), ¥{t)s ulx(s)) = o(x(t), y(t)),

and, in particular,

(1.4.15p) Plx,s ¥os ulx ) = olx , v ).

COROLLARY. If for each admissible X, cne can solve the boundary-value problem

1.4.8), (1.4.9), (1.4.10),(1.L4,11), then the correspondence between the initial state X

and its conjugate initiasl state Yo = g(xo) defines a function g{x) which must satisfy

the Maximum Principle

(1.4.16a) o(x, glx); u(x)) = o(x, g(x));

that is,

(1.4.16b) g(x)f(x, u(x)) = max g(x)-f(x, c)
¢ in C

Frequently, the principle {1.4.16) enabies one to determine the optimal control
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function u(x) in a unique mmnner.
For example, consider the time-opiimality problem for (1.2.1), (1.2.2). Here

f(x, ¢) = f{x) + Ko and so by(i.h.l5a) and {(1.4.16a)

(1.4.17) yof(x) + y-Ku = max y-£{x) + y.Ke,
le, i=1
;!
that is,
n .
(1.4.18) K¥y.u = max K*y.c = 2 |[[K*y], ]
[z, is1 11 *
eyl
which is obtained by the choice =, = sgn{K*y]i. Hzn:e
k4 3 1 g [K¥y1.] < s
(l' '-19) i.:Z;'l ui[K*.V.ii _iél K.YJiI) -1 = u‘i = l)

which implies that, for Yo ° S(XO);

(1.%.20) u = sgnlKryi,

Similarly, use of {1.4.16b)} implies that

(1.k.21) u(x) = sgnix#g{x)i, (g(0} =0}).

7

Thus we may state the following result, discussed below.

REFORMULATION OF THE TIME-OPTIMALITY PROBLEM. Consider the boundary-value problem

defined by the simultaneous systems
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|

(1.4.22) x = fix; = K zanik*yi, x(0) = X x{T) = 0,

(1.4.23) yo= -t &y, v(0) =y, vyl =1,

Suppose that for each X # O there isa T = T(xo) >0 and a corresponding unigue

Y, = g(xo) such that (1.4.22) and (1.4.23) are satisfied. Then the optimal control law

for the system (1.2.1) is given by (1.4.21).

NOTE. If, for some particular index j, {K*(x.')g(xl)}4 = 0, it may be seen by in-
VLS 1 3
spection of (1.4,17)-(1.4.21) that any value, subject to the condition <1 < uj(xl) =1,
may be selected for uj(xl). In this case, the time-optimal ccntrol function is not

7 criteria may be imposed to find +the most preferable time-

optimality control.

1.5 RESOLUTION OF THE PROBLEM

In summary, we may state the following.

RESOLUTION OF THE TIME-OPTIMALITY FROBLEM. If the function g(x) is defined by the

correspondence Yo © g{xo) g {C) = 0 Detween the initial stiates (xo, yo) which uniquely

satisfy the equations {1.4.22 and (1.4.23) then

(1.5.1) X = £{x) + K sgn[K#g{x)] is a time-optimal control system.

REMARK. If, in (1.2.1) one allows K = K{x) instead of K = constant, then all of the

statements concerning (1.4.22) (1.4.2%) and (1.5.1) remain valid provided that one replaces

the adjoint system y = =fx¥(x)y by
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f

(1.4.23 bis) V= ={y-filx) y-K(x)c]X]

o = sgn[K*{x)y]

il

“ly-£(e) + K (xdyee] |
)
?

c = sgniK#*(x)y]

-f¥(x)y - (ZK*(X)y]x}*sgnEK*CX)y]

Incidentally, in practice it is far more convenient to define the adjoint system as in
the first step of (1.4.23 bis), and then to carry through the indicated calculations in
each special case, than to calculate the Jacooian matrix fx(x) and thento transpose it.
In fact, for large n +the matrix fx(x) may have zeros in almost every position, and
keeping track of them can be extremely tediousy whereas taking the gradient of iglyifi(x)
is very efficient.

Similarly, it is far more convenient to calculate the gradient of iglyi[K(x)c]i than
to use the general formula ([K*(x)y]x)*, Some examples of this will be given elsewhere
[26], [27].

It should also be noted that the Maximum Frinciple, as proved in [25], is a necessary
but not a sufficient criterion. That is, if one calls any control function obtained by

the principle an extremsl control, then the theorem of [25] asserts only that every optimal

control must be an extremal control.

If, however, there is precisely one extremal control, then there are just two

possibilities:

(a) there is no optimal control; or

(b) the extremal control is optimal.
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In this way one can,in practice, often by-pass the difficuli question as to whether
or not an optimal control exists. In fast, if the adjoint-system approach establishes
that there 1s precisely one extremal control function, then this function will certainly
provide a stable contrel; then this function will certainly provide a stable control: and
the practical suitability of such & control can be investigated by a computer similation.
To be sure, the theoretical possibility exists that the extremal control does not provide
time-optimal control, but rather only the analog of a fiex-point of & curve or e saddle-
point of & surface, i.e., a “time-stationary” but neither time-minimsl nor time-maximal
control.

Further study of this question is clearly indicated. t appears likely that under
suilable nypotheses ilhe Maximum Frinciple provides conditions which are not only necessary
but also sufficient for optimality. In fact, in 1959 Breakwell [20] published & sufficient
condition for the existence of optimal control which is extraordinarily similar to the
Maximum Principle; however, in his formiation a problem is degenerate if, for example, the
metrix K = (kl’kg’ cees kn) in {1.2.1) has more than one non-zero element in any one of
its constituent column vectors ki’ (i = 1;2, oeey n). Since this restriction rules out
some of the most important practical problems known, an investigation of the possibility

of extending Breakwell's sufficient conditions would be most desirable.
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2.0 THEORETICAI FOUNDATION OF CPTIMAL CTUNTROL 3YSTEM SYNTHESIS.

a8y

PN

Lstion of the Synthesis Problem.

1} System Dyramics. Tr: =volution cf the dynamical system, represented
. . N S .
by the time dependent state vector or curve Xt )eE is assumed to be determined

by the differential system

with

where x
o

depends only on the state x, as dafinafnfre,

feedback "control function") .

(2) =. The class lL of admizsiblis

. PRI ; i “ [ T
is the initial state and u{x)eE" +he control function.

(If the vector u

u  1s called "instantaneous state

control functions is defined by means of

n

*

i

= - Yo ad £ 77 S o
an open¥*, bounded, convex subget of U in E

continuously differentiable funcrtions ulx)

(2) U 2 {u(x} |xeR, aen.

where: RCEH, R open. {x = C}eRS and

UCZEn, U open and boundzd, ccnvex

O o . A .
C” = class of continuous functions

T
LU

in

*This means that thers is no saturated (discontinaous ) control

is comstituted by continuous and

some subset R of E.

& Explicitly

cg» @8s we are restricted

here to continuous control (cseaU, or boundary of U, only).
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Q
I

class of continuocusly differzntiable finctions everywhere in RC:En

e

D! class of functions continucusly 1ifferentisble in an open dense subset R°
o _

of R, i.e. a set of R sucn that R°C Rand ROAR = R,

4
)

The conditicn for the range of coantrel funcrion 1> pelong 10 a certain set

u e U, fo X ¢ R

'__/

el

)

is called the "control constraint".

We shall distinctly say either ucll or uél.

b. Controllabilitz and stability domain: the dynamical system (1)

is assumed to be controllable in R. that is, U is non~empty (with respect to R)

so that for any xoeR} there exists soms *ims T and at least one of the uezl such that

,

xtT) = C,

4

The region R 1s called the stability domain the system with respect to the

=3

Q

class of control functions ZL ; and T is the transition time between the states

xo(O) and x = 0.

(3) Liapunov function and globel asymptotic stability.

A . . . s
(a) Let flx,u} be a vactor fuaction continuously differentiable

everwhere in R.

(3) f: Ryl—> E7,
with the property

We shall first assume that a lLiapuncv function relative to f(x,u) and to the class 21—

exists, according to the fclleowing hypothssis on U and definition.

Hypothesis on U . For emch ucll there exists 5 real function p(x) on RCE"

with the properties:
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(1)  o(0) = o,

(i1)
(&)

p{x) —3 +w0 as lxfl —>c if Rk

(iii)

L L

ofx} > 0if x % e

‘ R g .
gp(x) —> +0 as x ——F R if R is bound=d, or

is unbounded

the Lie derivative of pix] is negative definite, i.e.

f{x,u(x)) grad oix) < 0, for « £ 0

Definition 2.1.

(iii) is called a Liapunov functicn relative to

A function

= 0. for ¥ = Q.

. . R ) . s
oix) defined on RCE’ with the properties (i), (ii),

f and to the class of controls 214

Lemma 1.
above. For each uell ’

F
hs

ce

for all xeR and tel

(1) Tt

Consider the vector function fix,u

1

¢C* such that £(0,0) = 0, as defined

5

. : . 1
thers exists 2 vector function F(x,t)eC .

0
Rul, —~YE
a . T .
(IT 2 Lp, +@| ', with the properties:

= P{Fl«,t).

(i1) F(x,0) = x for svery xR,

(iii) F(F(x,tl)

(iv) F(x,t) —> 0 3s t — *+x .

Proof. It follows immre
It is now immediate, as
Lemma 2. For any X, =
x(t)
with the properties
FAPR ‘
i) x =

(i1}

(1ii) x{(t) — 0 as =

’

In other words, F(x

.

initial condition x(0O}
respect to (ZL/ .

Proof: It follows from

- . - . hY
dlamaly I0ln ROy T iE ia , C

3\ — Ay
) = Fix,n. =t ). fo e
sty Fix, o, 5l for every x€R and ti€I+,

for =very xeR.

- . 2

th

f(x),

! L hy - e ~

€ IL, there exists in R a vector functions

C, x_ ¢ R, ard 1.,x,
w
= F{xh,*, F defined as in Lemma 1)
4 LR TR M . I
Flxoux)), x0] = x_ Vo= a/dt)
£0, tel,
- T

iz the gerersl scluticn of % = f(x,u(x)) with the arbitrary

asymptoticglly stable in R with

Lemma 1.




(v) Constructicn of a'Liapuncy function. - We shall nOW'heuriSticaliy

.

"construct” a Liapuncy functiocn aftsr the following:

Definition 2.2. For every wetl . d=Yine 2 rpon-negative real function a(x,u)

m
e Fxl =3 Z,

PR 14 % o 4 Y Com At r
(11) alx,u; >0 for (xu) 5 (G0, eRxT
al0,0,; 7= 0

(ii1) grad(x) (0 u) T ¢ {identically with respect to U).

One can always assume that such a Function o exists,

Definition 2.3 {(Performarce Index . =z For each xR and ueZL define a real

function @: R —) I+ by thz folicwing irtegral, whick is in fact a functional:

where a(x,u) is a definite pesitive real functicn as defined in Def. 2.2. This
function is called "perfurmance index” or “performance criterion" in control
theory. (b) Accordingly. ard by wre definiticr of x(t) = F(xo,t), the @ above

is equivalent to

s o p . . *J .

- v by i i [a i . N

VED = it o wdF i) ) av
o

(Where, since F was defined for evsry x <R, ¥ and x have been interchanged).
'

Hypotheses on .

1. The integral definirg olx Ier =wery ue (4L, converges and thus ¢ exists.

’

2. weDl and thersfore grad ¢ exist: in K°C R {i.e. plecewise in R)(l). We shall

(1) More generally one could stats that @ 1is smoo‘h almost everywhere (a.e.) in R
I

and thus grad @ exists a.e., ir R. lUnder *re more restrichive hypothesis 2 used here,

¢ is said to be "Regular in E".




prove now that ¢{x) so defined is & Iispunov function.

Lemma. 3. For each u(x}ezz . ¢(x} of Def. 2.3 is a Liapunov function (Def.2.1).
Proof. First, it is clear that, by definition, ¢ is positive definite with

9(0) = 0, which proves conditions (&’ (i} ang (ii). Second, let us prove (k) (iii),

i.e., the Lie derivative of @(x; iz u=ga‘ive definite. For this purpose, it is

sufficient to prove an even more particular rroperty which characterizes @(x),

namely

(5) fx,u(x)) gvad o{x) = ~alx,u(x))

for every xeR, with a(x,u) > 0 as defined.

Proof. If F(x,t) is the genmeral solution of x = f(x,u(x)), then (calling oel

ot

h

+00
o(F(x,t) = | affiF(et).ol, u(EE(x,),0))]as,

which holds for any xeT.

By (iii) of Lemma 1, the same can b= written

o -
o(Fix,0)) = [ J[FQ:,JJFI,\!, u.(F(x,c*'t)ﬂdc.
Setting © = o +1t, do =de, with % < 6 < +o, and again (writing o instead of ©):

The derivative of with respect %0 o 1is then {writing again t instead of o
P . g ag P)

-~

g




dp(F(x,t)) _ F(x,t)
at = Ty

- grad p(F{x,t}} =

1}
k_h
—~~
=
-~
E
.
o+
‘1‘1
o
p
rs
v
Q.
k<]
Pamd
Lo
o
<
p—
S’
I

for tel, and xeR, as follows from (i) of Lemma 1 and from "Hypothesis on 212,

(4) (iii). Setting t =0, by (ii) of Lemma 1 stating that F(x,0) = 0, the

identity (5) follows, i.e. the Lie derivative of ¢ is negative definite,

]

(6) f(x,u(x)) grad o{x) < 0 for x

= Q0 for x = O,

hence, by definition, ¢(x) is a Liapunov function relative to the class 1[. Q.E.D.
The control problem involves the following: We are given a smooth control system

of the state vector form

(7) X = f(X»,":_J:} X(O) = XOER (.=d/d't)
where
(8) £(0,0} = 0

and we desire to discover a smooth function u = u(x) such that, for some open subset

U of E,

(9) ) uel for all  xeR,




and such thsat

(20) ulo} = o,
and
(11) x(t) =0 = 0 <t —p 4o,

We have called such a u{x) an admissible control law. It can be shown that a control

uel law is admissible if and only if there exists on R a positive definite

function @(x), and on RxU & positive defipite function a(x,u), i.e.

(12) p(x) >0, x#£0; ¢{0)=0;
(13) alx,u) >0, (xu} £0; «(0,0) =0,

such that ¢ 1is a Liapunov functio:n for (1) and -@ is its Lie derivative, i.e.

N

(14) f{x,ulx)) grad o{x) = -alx,u(x))

identically on the domain of stability R. In fact, we assume that such a positive
definite function ¢ exists. (Cf. Hypothesiz on @),

As an immediate consequence of {14}, we have that

+00
(15) p(x,) = [ aix(t), u(x(t)))at.
O

Conversely, if we are given an admissible control u{x), end a performance in-

dex a(x,u) which defines a performance criterion ¢ as in (15), then the convergence




of the integral in (15) for all ¥, in R dimplies that (14) holds in R.

The variational approach consists in determing a function u(x) which mini-

mizes the functional o(x) over R.

Definition 2.4. Optimal control Iiazw c{x} is 2 single valued vector function of the

class U of "admissible" controls such that it minimizes (absolute minimum) the

functional o@(x) >0 (Def. 2.3)

’

oG
(16) Px,) = [ ofx,e(x))at = Min.,
o}

(¢ defined for any xoeR) with respect of all the control functions of the class.

This property is also expressed by saying that

e

'y
~

N

1A
N

for all uell and xeR - 0. Let us denote by {@} the family of al o(x;2Ll).

First Fundamental Hypothesis. It is assumed that c(x) exists (and thus @, the

absolute minimum relative to ZL s exists)g¥

Auxiliary hypothesis on f@}'. The minimum @ is attained (relative to 2[).

Definition 2.5 Conjugate state or co-state of z system is a single valued

function y: R —a»En,

(18) y = y(x) & —grad o(x),

defined piecewise in R, 1i.e., in R°Cc RCE" {assuming that o@(x) is smooth in

R°CR and hence grad o(x) exists in R°CR). One also says that y 1is the

*We do not assume that c(x) is unigue. It is clear, however, that P (absolute
minimm) is unique.



co-state of the state x(t).

Definition 2.6. The Hamiltonian of a dynsmical system is the single valued real
function
(19) H{x,y,u) £ y £{x,u) - alx,u)

defined on RxE xU (with a(x,u) as per Def. 2.2).

Second Fundamental Hypothesis. The Hamiltonian H has a meximm with respect to

all control vectors wueU

(20) H(x,y) = max H{x,y,u)
uel)

Definition 2.7. Define a vector function c(x,y) for every ¥y En, such that for

all y's, E(x,y) = cel and such that

(21) H(X;Y)E(X;y.\’:’ = E(X;Y)

Remark. c(x,y) is not necessarily single-valued.
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2.2 Pontrjagint's Maximm Principle

The statement that wu(x) is an admissible control law is equivalent to the state-

ment . which is equivalent *o the ztatemsnt

(l) H(XJY<X)) 11<X)) C.

it}

Hence we may use as a mnemonic the remark that "a control system is stable if
H=OH
Now consider the choice of an optimal control function c(x), di.e., one which

minimizes ¢(x ) for each x in R. Define
o) o

(2) v H = H(x,y) = max H{x;y,u).

u e v

Also, define c = c(x,y) as any function (in general, it may be miltiple-valued as

stated before) which satisfies

(3) - H(x,y) = H(x,y,2(x.y)).

-

In practice, it is easy to compute c(x,y); one can usually solve

(%) - grad

(u)

H(X)Y;-C-) =0

quite explicitly for ¢ = c(x,y), and verify that this o actually maximizes H by

the usual methods of calculus. Let us consider the following Lemma without proof.

o -




Lemma 4. If c(x) thet minimizes @(x) exists (Def. 2.4) and the minimum

H(x,y(x)) also exists (for all y), then

5) H(x,y(x), c(x) = H(x,y(x)) = 0
for every x € R = 0.
" Lemm p. If there exits an optimal control function c(x) (Def. 4.1) and an

absolute minimum H(x,y(x)) of the Hemiltonian, then for every x € R,
grad, ya(x,u(x)) ., \+ £*(x,c(x)) grad o(x;{c}) = 0,
\Uuy Uu=2\1{X/ [9%

Fundamental Theorem of the Maximum.

Let R E° be an open set and x =0 € R, and U an open, bounded, and
convex set of E° which also contains the origin u =0 (Cf. 2.3).

Let, as established in Part 3(a), f: R x U -»E" be of class C and
£(0,0) = 0. Let a real single valued function H: R X E'xu —E' be defined by
H(x,y,u) = y-f(x,u) - a(x,u), with y = y(x) = -grad ®. With these definifions:
Hypotheses: (1) Let consist of the non-empty élass of all vector functions

: R->U such that (1) u(0) =0, (1i) u(x) e c® on R, (iii) the

- . . . . o
Jacobian ux(x) exists and is continuous on an open, dense subset R° of R.

(i.e., there exist controls with property (1ii)). (2) There exists a real

function @(x) which can be defined as

9(x,) = I7 % alx(t), ulx(t)as

(¢]
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which is such that 9(0) =0, o(x) >0 if x £o.

That is, combining (1) and (2), let be the class of "control" functions

u(x) and o(x) =a Liapunov function, such that ensures the global asymptotic

stability of the differential system (1);

X = f(x, u(x)) x(0) = X

for every x_ R (xo #0).

(3) Suppose that ®(x) has an absolute minimum and there exists a function

c(x) € such that

o(x; {c¢}) = o(x; (u}),
for all u e
Thesis.

Then c(x) must satisfy the following properties:

H(x,y(x), c(x)) =0 for all x e R

il

(6)

H(x,y(x), e(x)) = max H(x,y(x),u)

uel

1l

that is, equivalently:

f(x,c(x)) grad o(x;{c}) = - a(x,c(x))
(7) :

al(x,c(x)) + f(x,c(x)) grad o(x;{c}) Min a(x,u) +
uel

]

+

f(x,u)-grad o(x;{c})



Corollary 1.

If there exists a unique ¢ - ©{x,y) so that

(8) y-f(x, ¢) -alx, ¢) = Mex y-7(x, u) - alx, u)

us
then c(x) = c(x, -grad 9(x)), and the Pirst of equations (13) and the second of
equations (14) can be combined into the single property that the nonlinear

Hamiltonian-Jacobi partial differential equation

(9) f(X:E(X: ~grad @))"grad ¢ = -Q(X,E)X, -grad CP))

should have a positive definite solution on R.

Proof: It is immediate from the Fundamental Theorem:
Corollary 2. For every X, € R it holds:

(10) k= flxye(x)) = £(x,e0x,7)) = grad yH(x,y)3(x,5))

with x(0) = X

(11) vy = -fx*(x,c-:(x,y))y + grad(x)a(x’g(x,vy} = —grad(X)H(x,y,c(x,y))
(12) 7(0) = -lemaa o(x)l, _
(13) ¥, e)(0y)) - alx,e(xy)) =0, te1,
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Proof. We have already seen in Lemmes % and 4 that (6) and (7) hold. Also (10)

holds by definition of ¢ and <. Now note that with
y(t) = y{x(t))

it holds, by Lemma 5:

(14) ¥ = -lerad o(x(t))], £ (x,c(x,y))

for any x € R.

On the other hand, by (6) - (7) we have (13), with c(x,y) = c(x), whence

(15) - grad ¢ _fx,c(x,y) + fi(xxgix;y))y - grad(x>a(x,3(x,y))

* \ .
But by Lemma 5, the coefficient of c  1is zero. Hence by (1%) - (15), (11) must

hold.

I

(16) H(x,y,c(x)) = Hlx,y)

- grad o{x). Another way of expressing (16) is

for every state x and co-state ¥y

to say that

(17) e(x) = elx,y), vy = - grad o{x).

i
i
i
i
_
i
i
i
i
' ro 1 (n2(x,y)y - arad ) (5,E00y)) =0
i
i
i
i
i
i
i
i
i




This fundamental result can be summarized by the statement that "a control system
is optimal if, in addition to ¥ = C. on= has also H = H".
A sufficient condition for the =xistence of an optimal control c(x) on R

is that, on R, the Hamilton-Jacobi Partial Differential Equation

(18) Hix,y,elx,y)) = 0, vy = - grad 9

has in R a positive definite solution @(x). A more explicit way of writing (18)

is
(19) £(x,%(x, - grad ¢)) grad 9 = <o(x,8(x, - grad @)).

This nonlinear partial differential equation appears to be quite formidable; however,
_ *

for the case of a linear plant, f(x,u) = Ax + Ku, ¢C = sgn[k j], and a =1, it is

possible to find the general solution of (19). (This last example, with constraints

lui, <1 and a(0,0) #0, seems to violate the preceding hypotheses; however,

4

11 B! e Taade +14 N
hall see below how to inciuas Thnt o]

o
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!

In conclusion, it is easy to remember the salient features of this (simplified)
Liapunov-Pontrjagin theory of the stabilizavion and optimization of control systems
by remembering

H=0 &—==3 STABILITY
H=H=0 ===y OPTIMALITY
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(6) - sat[o]-

2.3 The Pay-Off Penalty and Trade-Off Functions.

2.3.1 Time-Optimal Control

Consider the system

=
-

(1) x = f{x} + Ku ,ui <

and try to minimize the quadratic "cost of control" criterion

T(x )

(2) o =0(x) =/ °ult)qu(t)dt.
0]

e
We shall show that this criterion, and the constraint luil <1, lead to a dual-
mode (or"linear-saturating") control law.

The Hamiltonian is

(3) B = y2(e) +ue [y ] - uequ.
Hence
(&) grad(u>H =Ky - 2Qu.

A detailed study of the situation at hand shows now that
e *
(5) ©u = sat [(1/2)Q x y] s

where el’sat[?] g el-Z and where

0, lo] < 1;
sen 0, o] > 1.

- b1 -
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- .
Now let f£(x,u) = Ax + Ku. Referring to equations (18)-(23) of Example 1

it is easy to see that setting y = - Bx in (5)rcauses (5) and the equations

(22)-(23) 'of the foilowing example to agree for all [x|| < e, where ¢ < Q/HQ-IH,

k|| [IBli. Hence we have the following result: '

h.;y;iet the matrix -A be a stability matrix, so that the matrix ‘equation

L]

(7) . PA¥ + AP = KQ”lK*

Has a positive definite solution

8)- P = pP* >0,

L
Then the system o
(9) - X = Ax + Ku, la, | =1,

becales Optimal relative to the performance criterion

~

(10) L 90xy) = I uit)quit)at
o]

if for the optimal‘ control law u = c(x) one chooses

(11) - e(x) = sat[Gx],
(12) ¢ = -(3)Q kB, B =Pl
EXAMPLE

Let U = En, R = En, and consider a linear plant
-



(1) 3 X = f(x, u) = Ax + Ku

. with a quadratic pgrformanze index

3

(2) afx, u) = x°Cx + u-Qu,

M .
N , -
=

£y

* where the matrices C“and Q are positive definite; i.e., C = C¥ >0,

Q = Q¥ > 0. Then we have for the system’s Hamiltonian

¢ . Y
: (3)‘ . «H = H(&Ly,u) = y-£(x,u) - alx,u) = x-A*y + u-K¥y = x.Cx - u-Qu
. -
L4 Y, R Cox 4 2
= X°A¥y - x-Cx + u~K*jr - u-Qu. ’

Now gred, )H(x,fsl‘;c_:) = K% 0

£

0 whence ¢

li
It

- . Sl
c(x,y) is gﬁ'n-;n{by F

-]

Q "K*y.

o
1
oj~

(&) K¥y = 2Q3,

- Alsb,’it is easy to verify that the Hessian at F is negative definite, i.e.,

(% : [Grad(u)H(x,y,u)]u = -2Q < 0,

& s'

s _

.. - i »
< - Y 1 “l

(6) ‘3\/.'}(93'!' = 5Q TK¥y
&

o f

provides a true maximum to H(x,y,u) on U = E®. Thus we have
e . _ )-(-

N
?




(1) H(x,y) = 8(x,y,5(x,y)) = x"A%y - x-Cx +
SRy QTR - Skeyeqlioky

and so the Hamilton-Jacobi equation is

(8=) H = xA%y - x:0x + 4y (k07 K*)y = 0

(8b) ¥y = -grad Q.

Also, the Hamiltonian equations corresponding to (3) and (6) are

(92) % = Ax + 3k 7K"Yy, x(0) = x,

(9v) y = -A%y + 2Cx, y(0) = -grad o(x )
where

(20) ?(x,) = £+°° [x-Cx + &y (KQK* )yldt.

Now define the 2n X 2n matrix t* by

(11) H = ,

2C A%



M(t), m{t)

(12) e t
R(t), S(t)

Then the genmeral colulice of [2) 1. glven by

(13s) x(t) = M(t)xo + N(t)yo

(130) y(t) = R(t)x, + S(t)y, -

Now suppose there exists a positive definite matr B =B*¥ >0 which satisfies
the 2n(n +1) similtaneous quadratic equations in the 4n(n + 1) unknowns

Bij’ i<Jj, given by

(1) BA + A*B - B(KQ-lK*)B_= -C.
Then set
(15) Yo = -2Bx

and, inserting (13) into (10) and rearranging the algebra, find that w(xo)

xo-B'xo. However, X, is quite arbitrary, and B is independent of Xy Hence,

in general,
(16) ®(x) = x-Bx; grad ¢ = 2Bx.

Thus equation (15) is equivalent to the statement that
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(17) ' v, = -grad o(x_),

i.e., y(x) 1s the co-state of x. Thus we have exhibited a.global solution
both of the two-point boundary value problem (9) and of the Hemilton-Jacobi -
equation (8). Hence c(x) = c(x,y) = -(%)[Q-lK*B]x. Thus we have pfpved the

following result: The system

(18) X = Ax + Ku, x(0) = X s

is optimal rélative to minimization of the performance criterion

(19) 9(x,) = ["®[x(t)-cx() + u(t)-Qu(t)lat,
0

if the guadratic eguation

(20) BA + A*B - B(KQ_lK*) = -C

(where C =C* >0, Q =Q* >0) has a solution

(21) B=DB*>0

and one sets

(22) u = Gx,
(23) ¢ = ~(3)a tK*B.
- 46 -
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2.3.2 Constraints.

Consider the problem of attitude control of a space vehicle by means of
reaction jets. As we have seen, for time-optimal control each jet-actuated control
torque (in.dimensionless units) should either be given the signum +1 or -1. Such‘

a control is .called BANG-BANG control.
We shall now prove that for fuel-mass-minimal control, i.e. for the performance

criterion @ defined below, the optimal attitude control mst be what we shall call

BANG -COAST -BANG control.

In fact, the relevant two-point boundary value problem, for the performance

criterion

T

(1) | ¢ =/ (1 +ulel)at, u>0, Jef =c-sgnfe] = legb + oo+ e |
O

has, with a constant matrix K, the form

(2) x = f(x) + Ke, x(0) = X s
(3) y = -, (x)y, ¥(0) =y,
(&) x(T) = o, fejl<1,

while the associated Hamiltonian is, for p > O,

(5) H=yf(x)-1+ uE°(u' Y - ssn@]ﬂ .

By the Maximum Principle (H = E) we must choose c¢ so as to maximize H rela-

tive to (4), keeping x and y fixed. This leads to the results
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(6) c; = 1/2(1 + sgn I::e y,' - U/sgn[ :yj (i=1,...,n)

where (el, e2, ceny, ) =1

It is clear from the Bang-Coast-Bang control law (6) that as the fuel minimiza-
tion increases in importance relative to the time-minimization, i.e., as u increases,
the law (6) gives ¢; =0 for longer time-intervals. (In fact, c; =0 for

ty, Vh [ehK'y(s) )
t, <t <t,, vhenever |e y(t)]<u for ty <t <t2).
A concrete example of the principle (6) will now be given. Consider  the

problem of single-axis attitude control. The governing moment equation is simply

(7) 36 + ysgn (5] =

It can be proved, by .elementary reasoning, that for controlling (7) so that, at

a pre-specdfied v(non—-mj_nima.l) time T > 0, one has
e(r) = &6(T) =0

while at the same time minimizing the fuel-mass expelled

. T
(8) ¢ = [ |sen[d]at

(where now we allow sgn[g] = 0 if ¢ = 0), one mst use the control law

(92) o = 1/2(senfo] + sen[o]]),
(%) cl=o+x‘—;—7—élél, r >,
(9¢) 02=O+%élé,.

It is clear from Figure 2.4.2-1 that as A — 1, the system (7) - (9) tends to
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a purely time-optimal system, while A —y +00, the region of coasting (withxﬁs =0,
6(t) = const.) increases and the system becomes more and more fuel-mass minimal.

The result (9) is basic to the subject of fuel-optimal attitude control.

The extension of this result to simultaneous 3-axis fuel-minimal attitude control
would be extremely useful. An appropriate version of this hypothetical extension
will be derived below.

Before exhibiting this 3-axis control, consider the subject of external torque
disturbances. If the system (7) is subjected to a disturbing torque 4, [d] < x/e,

and if 4 be regarded as a constant, then the time-optimal control of the system
(10) JC + ysen[d] = 4,

is given by

g slél
=G - [fr]sem o)

(11)
In order to mechanize (11), one must measure d. This can be done by using, in (11)
d -

(12) d = ysgn[g] +J & LQ]

where sgnl@] and © are readily measurable variables. Of course, d[él/dt is

corrupted by noise, but filtering and smoothing techniques can be employed. By the

notation

(13) afo]/ at

we mean a suitably averaged and smoothed measure of d[b]/dt.
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Note that, if (12) be inserted into (11) 1e system (10) is not only time-
optimal but also SELF-ADAPTIVE to external disturbance torque variations. Furthermore
if the values of J and » wused in (11) - (12) are not correct, we can lump the

residual (or discrepancy) with 4, i.e., replace d in the concept by

(1) 3+ (3 -3+ (7 - 7) senfs]
A A A

where J and y are the true values and J, y the assumed values. Thus, if (J-J)
and (y - ;) be sufficiently small, the self-adaptive feature (11) - (12) can compen-
sate not only for unknown external torques, (the unidentified environment) but for
lack of precise identification of the system's internal characteristics. Thus the
system (10) - (11) - (12) is truly self-adaptive.

In conclusion, we shall generalize this self-adaptive time-optimal control law
to all 3 axes. (The extension of the fuel-minimal law is quite similar).

The system is governed by
(15) 3= et (i=1,2,3)
(16) JW + w@Jw = - Isgnfg] + d
where T = diag (71, oy 72) and where ei-g =04, (i=1,2,3). Also
, = -Arcsin [ug /\/-l - (ui)EJ

(17v) o, Arcsin [ui]

(172) 2

]

(17¢) 03 = - Arcsin ‘:132_ /\/1 - (ui)EJ . |
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> ~ -
8 = w, + [sino tano_]
(18a) 6, =W + L51nultan92 Wy - [E:osoltanoajw3

(18b) 0'2 EosOJ LA Ein@ljw3

‘o sing Ccose
(18¢c) 05 = - [;oso] [cosgj
Now try the control law

93 v vy

(19) 0y =0t 3 ’ (i=1,2,3).

i

(l = T sgnEriJ)
4

Choose the Liapunov function

3
1/2J(w) + §17/I

(20)

I
Il MW

i

Clearly @ =0 if and only if 0, =W, =0, (i=1,2,3). It can be proved that

3
(21) b - (/6) = oayhal s O, +2)
whenever
(22) la;l <»; / 3.

In fact, differentiate ¢ with respect to time. Clearly

L] 3
(23) P = z:w(w.)+ Z ysen o o] .
=1
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Now substitute Jw, from (16), and compute &, from (19), wherein one can
substitute ©, from (18) and “’i again from (16). Note that éi =, + O(of,wf .
Then by use of (22) and simple inequality arguments, the result (21) can be obtained.

If yuu2 + Uwﬂz, or equivalently if ¢ be sufficiently small, then

. 3
? < - (1/12) z 71""i"
i=1
Clearly, ¢(t) is monotone non-increasing and tends to a limit. Now v, = 0,
(i=1,2,3), implies that @ = O, whence @ = const. > 0, whence at least one lo,| > O,
and so by (16), v, = 0 1is impossible. Thus @(t) 2 Oas t — +w.

Therefore the control law (19) is a stable simultaneous 3-axis quasi-optimal

control law in some neighborhood of the origin.
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3.0 Finding the Time Optimal Switching Surfaces.*

Recently first computations of higher order switching surfaces have begun at
Aeronca. Based on theoretical developments of D.C, Lewis and F. Mendelson it has
been possible to carry out the computation of an explicit closed form expression for
the switching surface of a plant of any order. That this has actually been done for
any plant of order greater that two is in itself a milestone. Care is necessary,
however, in seeing these results, now carried out only for plants of third and forth
order, in proper perspective.

To date it is clear only that linear plants with a single actuator, and then only
a special subclass of these, can in principle be solved. It appears, however, that the
full class of linear plants with a single actuator can be successfully tackled.

It is possible that extensions to many actuators and finally to nonlinear plants can,
in principle, be pursued through generalizations and extensions of the methods that
have brought this first problem to bay. This is how it seems st this writing. 3But
at this writing a clear program leading to a reasonable optimal synthesis of the
Saturn control seems feasible. This is because the Saturn can be reasonably approxi-
mated by a linear plant with a single actuator.

In any case, examples of optimal control laws are now in hand.

With these results, it is also apparent, that the situation is not nearly so
sanguine as might have been expected from earlier confident predictions, nor of course
so bleak as some investigators have painted after devoting great effort only to pro-
duce failure. After all, there are now some results in hand. The picture is actually
like this. The results, that is an expression for a control surface can be found.
With this expression come a set of inequalities (n-1 for an n cordinate system).

These expressions’in the special case solved, besides going up linearly in number with

*This is a report of work carried out on NASA Contract NAS8-5002



the order, apparently become much more cumbersome in form. But, on the other hand, and
this is of crucial importance, the procedures for obtaining the switching surfaces are
very methodical despite the abstractness of the arguments.

What this means then, is, that if it is wished to be able to study cases of con-
siderable complexity, it will be necessary to produce the expressions by & mechanical
procedure. This is possible. The form of the algebraic manipulations that must be done
is clear. P. Merryman has recently begun, in conjunction with this project, to reduce
the algebra to machine manipulation, with a project to evaluate an arbitrary determinant
whose coefficients are algebraic expressions as an algebraic expressionf' A program to do
this has been written and is now being readied for machine testing. This initial program
was for testing the feasibility of principles that would be pertinent to such an under-
taking. It is now presumed that these principles work.

Next comes the question of the applicability of the control surfaces expressions once
they have been found. That guidance and insight will follow is obvious. In the context
of the synthesis problem however, there are two possibilities that must be entertained.
One is that the expressions generated are far too cumbersome to, with any foreseeable
extrapolation of the state-of-the-art in hardware, manifest as a missile computer. In
this case, these best switching surfaces would be used as a starting point for generating
approximate surfaces amenable to rapid computation.

Second in this line of thought is the possibility that these are the only
solutions achievable. That it will require a sophisticated perturbation theory to

obtain the solutions of plants evincing even slightly more complex forms. In thet

*
P. Merryman has also found and programmed a procedure for finding eigenvalues and

vectors of arbitrary non-singular matrices, which will be of importance in the investiga-
tion of the arbitrary linear plant. This work is reported below where the eventual
application is to finding approximete optimal trajectories of general plants.
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case these solutions have a central role to play, as the harmonic oscillator or
the hydrogen atom in quantum mechanics. Far from being a hopeless situation, it is
one in which investigators can apply a whole range of procedures to obtain the more
crucial insight that they need.

From this perspective a glimmering of the programs that will be important to
bring this effort to fruition are becoming clear. First to find "first integrals"
from which the surfaces are built up is easy in the case attempted. In general it
may be most difficult to practice the given procedure. Other procedures may have to
be investigated. P. Mendelson already has some results in this direction. B. Bass
also reports results of a more general nature.

Second there is the whole program of moving toward more difficult plants. As
the regularities to be found have yet to be reported, it can only be commented that
the construction of the surfaces should be tried in a search for these regularities.
Auxilliary techniques mgust be found. Here, one auxilliary technique is being persued
by P. Merryman. Applied to the simplification of the plant it is a procedure for
finding a transformation to a simpler form. Applied to investigation for insight
into the problem it is a procedure for finding approximate trajectories.

Third it will be necessary to learn how to generate mechanically the expressions

Ry

for the switching surfaces as the cases are understood. To date, P. Merryman haé
initiated a program in this direction. P. Mendelson has hopes of working closely with
him,

Fourth, a program to learn how to perturb the known solutions may have to be
initiated.

Fifth, it is certain now that much will have to be learned about how to approximate
the known solutions where fast computations with light equipment is imperative.

Below is presented the fundamental approach used by D.C. Lewis and P. Mendelson.

b



3.1 Statement of the General Problem.

We have given a system of differential equations of the form

(1) x = £(x) + ae,

where the dot stands for differentiation with respect to the time t, where the
unknown x 1is an n-vector, where f is an n-vector function of X, and where a
is a constant non-zerc n-vector. f(x) is assumed to be of class C*', at least. As
for the scalar € , this is a bounded not necessarily continuous function which is to
be chosen in such a way that a solution starting with given initial conditions will
be steered as quickly as possible to the origin x = O. Evidently € can be regarded
as a function of x.
Also without essential loss of generality we can take the bound for |el +to be 1.
Otherwise we would modify the vector a by dividing all of its components by the bound.
From the "bang-bang" principle it is known that time optimality may be achieved
in a wide variety of cases by limiting € to its two extreme values +1 and -1.
Thus, we can regard (1) as representing two systems of continuous differential equa-

tions, namely,

(1a) x = F(x), where F(x) = £(x) + a,
corresponding to € = +1, and
(1b) x = G(x), where G{x) = f(x) - a,

corresponding to e

-1. We now formulate the problem by asking how it is possible
to steer a point x into the origin as Guickly as possible by making it move first

along & solution of the system (la) {or (1b)) and then along a solution of (1b) (or
3 -4
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(1a)), and then, again, along a solution of (la) (or (1v)), and so forth, until the
origin is reached in a minimum time. The problem is to determine at what point, x,

we should switch from system (la) to {1b), or vice versa. These points are known as
switching points; and point sets consisting of switching points (corresponding to all
time optimal paths) are known as switching manifolds, even though these point sets
need not be closed manifolds in the strict technical sense, whereby each point of

the set has a neighborhood whose intersection with the set is homeomorphic to a simplex
of some dimensionality > 1 and < n. In fact most of the switching manifolds, or at
least the parts of them referred to later as "leaves", will turn out to have certain
boundary points which will constitute switching manifolds of lower dimensionality.
Broadly speaking, our problem is to determine equations for these switching manifolds
and to develop certain inequalities which can also be satisfied by points lying on the
switching manifolds. These inequalities are necessary because the switching manifolds
are found not to be completely determined by the equations. This is connected with the
fact just mentioned that the switching manifolds sre not closed.

3.2 Comments on Linear Plants.

Consider the so-called case of a controllable linear plant, whereby
f(x) = Ax, A being an nxn constant matrix, and where the n¥n matrix D, whose
columns are the vectors, a, Aa, Aag, ey Anﬁla, is non-singular. This definition of
the controllability of a linear plant was introduced by Kalman and is designed to
insure that every point in some neighborhood of the origin can be steered into the ori-
gin in the indicated manner. From this fact it is obvious that controllability is
invariant under non-singular linear transformations of the vector x. Indeed it is
easy to verify that if x is replaced by Lx, L %being an nxn non-singular constant
matrix, A must be replaced by LAL-l, a by La and D by ID. And, of course,

LD is non-singular, if both L and D are.

These facts make it possible to perform a preliminary normalization, so that the
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components of a may be assigned any special values not all zero. For instance, there

the i th

is no loss of generality in assuming that i1 component of A is &

uming that i1
We next turn to a more far reaching reduction of the form of a controllable

linear plant. We introduce a new unknown vector y = D "x, whose n-components it will

be convenient to denote by Vo1 Y95 +ees Yn.1 (rather than by Y15 Yos +ne) yh). Then

evidently x = Dy and, from the original equations of the linear plant, which we

recall are
(2) x = Ax + ae,

we find that

v o= p ik = D_l(Ax + ae) = D-lADy + D lae.

n-1

Suppose that the characteristic polynomial of A is A" - % pkxk. Note also that
k=0

n-1 n-1 n-2

x =Dy = £ A%y, by definition of D. Hence ADy = I A%'lay — alay _ + % AN*lay .
k k n-1 k
k=0 k=0 k=0
n-l n-2
+
Hence ADy = X Ak+layk = Apayh 1 + Z Ak layk.
k=0 h k=0
n Bt
By the Cayley-Hamilton theorem A = X PkA . Hence
k=0
(n-l K n-1,

ADy = ZpAJ ay + X ATay, ..

-0 X n-1 p=1 -1

0]
Ps Yo
Therefore Dy = ADy + ae = D| F1 Vo, *D Iy + ae
Pha Yn-2

Multiplying by D_l, we thus get the following equations for the linear plant when
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expressed in terms of Yor voes yn 1"

ede
|

= +
poyn-l 0 +.bl€

Y1 =Py * ¥, thbgE

3) (

+b k =1,2,...,n-1.

\ Y TRVt Vg Y P

Here we use bl’ b2, cens bn to represent the components of the n-vector b = D-la.

This means that Db = a, so that

(2)
8 A8 TAMes .. ! Py \ &
i i
(2)
8y Ihya;  IAyTay ... Py 8
() i
)
a s zal®) | \® / \a )
n ni’i ni 71 n n
i i
(k) . ) .th .th
where we have used Aij to represent the element in the i row and J column of
Ak. From Cramer's rule, it is clear that (h) implies that bl = 1, while
b2 = b5 = ... = bn = 0. Hence, from (3), we see that any controllable linear plant

can be written in the prepared form

(5) o~ poyn-l te

yk = Pkyn—l + Vi1’ k=1,2,...,n-1.

N
|
-3



Notice that it is easy to eliminate Vor Y15 =v>s Yo from these equations, the
result being

(6) ) TR )

- Py =
n-1 k=0 k'n-1
After (6) has once been integrated the function Yp_pr Y37 +++s ¥, can be found

successively without further integration from the last n-1 equations in the

system (5).

This is & major conclusion: A controllable linear plant consisting of a system

of n first order differential equations can always be expressed as a single nth

order differential equation of the form (6). The converse position is also true.
For, if (6) is given a priori, we can form the system (5), which is certainly con-
trollable, since the matrix D pertaining to (5) may be seen by a short calculation
to be merely the unit n¥n matrix. Of course, this means that not every system (2)
is controllable. For an example we need only to choose A so that it has a pair of

equal roots with simple elementary divisors.

3.3 Review of the Theory of First Integrals.

Our general method for obtaining the switching manifolds of a system such
as (2) or even (1), where f need not be linear, depends upon & familiarity with the
theory of first integrals. We propose here to review the simple facts needed in the
following sections, where we shall explain and illustrate our method.

A first integral of the system (la), say, is a scalar differentisble function,

p(x,t), of the n-vector x and the scalar t, such that

(7) Br(x) + X =o0.

This means that o[x(t),t] = constnat, whenever x(t) is a solution of (la). It is
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easy to see that (7) is necessary as well as sufficient for the constancy of any
elx(t),t], for the initial point x(0)

If g% = 0, the first integral is said to be time-independent. Otherwise, it
is called a time-dependent first integral.

Finally we will consider Xk-vector first integrals, both time dependent and
time independent. The definition is the same as in the scalar case but in (7), 1)
is now interpreted as a k-vector functicn instead of & scalar function. Each compo -
nent of a vector first intefral is, of course., a scalar first integral.

It is easy to obtain n-vector first integrals of the system (la) by appeal to
the existence theorem for such a system.

We hereby assume that F 1is of class C' and then we know that an n-vector
differentiable function Y(xo,t) can be found, which, for constant n-vector X
is (considered as a function of %) a solution of (la) and reduces to x, vhen
t=0. Moreover if we write x = Y(xo;t), we can immediately solve for x_ in terms
of x and t. This is because x and X, represent points on the same trajectory;
either may be regarded as the initial point; x appears on the trajectory at time +t
after Xy while X, appears on the trajectory at time -1 after x. Hence
X, = Y(x,-t). In other words, if x(t) is any solution of the automonous system (la),
we have identically V¥[x(t),-t] = x(0), which is constant. Thus ¥(x,-t) is a
time dependent n-vector first integral.

It should also be stated that the corresponding n-scalar first integrals furnished
by the components of ¥(x,-t) are independent in the sense that the Jjacobian determi-
nant of the V¥'s with respect to the x's is never zero. It is satisfactory for our
purposes to know that this is true for all small t, as it is obvious from continuity
because of the fact that the Jacobian is clearly unity when t=0, this last fact being
obvious from the identities o{x,0) = x. To prove the statement for large t, we

could mention that the Jacobian is a Wronskian of a certain set of solutions of the
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system of linear differential equations adjoint to the variastional equations based on
the solution x = Y(xo,t). We shall omit details on t+his.

What about time-independent first integrals. To discuss these, we limit all
attention to a region where one of the components of the vector F does not vanish.
This is apparently the case in applications to control theory. In order to single
out the particular component of F which does not vanish, we change our notation.

In the rest of this section, x will denote an (n-1)-vector, y will denote a

scalar, and the system (la) will appear in the form,
dx d;
(8) it - f(X’Y)) a% = g(X;y)) g<XJY) % 0,

where, now, f is an (n-l)-vector continuously differentiable function of x and y.
In other words the pair (x,y) replaces the previous x and the pair (f,g) replaces

the previous F. Iet us write the initial value solution of (8) in the form,
(9) X = @(xo)yo)t); y = Y(Xo;yo)t))

where @ is an (n-1)-vector function and ¥ is a scalar function, and where, of course

@(xo,yo,o) = x_, Y(xo,yo,o) = ¥,. Then, from the previous discussion, we know that
(x,y,-t) constitutes an (n-1)-vector first integral and ¥(x,y,-t) is a scalar
first integral, both of them being, in general, time-dependent.

One of the equations which expresses the fact that (9) constitutes a solution
of (8) is

¥(xs¥,5t) = elolx,v,t), ¥x ,y ,t)].

Since g 1is, by hypothesis, never zero in the region considered, it is clear that

the derivative of ¥ with respect to t 1is never zero. Hence, if k 1is any con-

venient constnat (to be regarded as definitely fixed from now on), we may solve the

equation
3 - 10




(10) ¥(x,y.-t) = k

for t as a function of x and y, say,

(ll) t = T(X)y); vwhere \Y(x)yJ "T(X:Y)) = k.

We next define the (n-1)-vector function &(x,y) as follows

(12) (I’(x,v.V) = CP(X,}", ‘T(X;Y))-

The claim is now made that & is an (n—l)-vector time independent first integral of

(8) and that t(x,y)-t is a scalar time dependent first integral.

Proof: Since o¢(x,y,-t) and ¥(x,y,-t) are (time dependent) first integrals, we

have
(15) CPX(X;Y, “t)f(x)Y) + ch(XJYJ "t)g(x)Y) - CP_t(X,y; ‘t) =0,
(14) v E+ ng -¥, T0,
as identities in x, y and t.
Since ¥(x,y,-7(x,¥)) = k, we also have

o1 - o1 -
(15) Y,y =¥ xS0 and ¥ -¥ =0
Therefore

ot . Ty =
(16) (\yx - ¥, Sz)f + (\yy - ¥, gy)g = 0.
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These are identities in x and y. Subtracting {1L4) with t set equal to t(x,y)

OT  JT, — . .
from (16), we have Y_t(t,x,-T(x,y))[l " 3x " 5y] = 0. Since ¥ never vanishes,
we have
. ot ot -
7 + - 1%
(17) ST eE 10

and this expresses the fact that T(x,y) -1 is a time dependent first integral of

(8). By definition of & , we have

X, . B > 9
ST aE T e o KIE Loy -0 Sle.

From (17) this reduces to ?f*+ g - ?_;» which, in turn, from (13) reduces to 0.
This completes the proof of the claim.

The (n-1) components of @ together with T are seen to have & non-vanishing
Jacobian with respect to the components of x and y. In fact, from (15) and (12)

we see that

s SRS ) ST ot
x oy 1 P - P 3 CPy - P dy
Tt dt ) gtz

> Sy *x Yy

Since % = \yx/y_t and %’r =¥ /¥, Ve may add to the first (n-1) rows of this
determinant the last row multiplied by the (n-l)-vector ¢4Q/Y-t' This shows that
the jacobian in question differs from the jacobian of the n time dependent first
integrals, ¢, ¥, only by the non-vanishing factor Y-t'
Thus we have proved that the transformation

Q(X;Y)

v
1

(18)
(x,y)

=3
|
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is non-singular at least in a neighborhood of any point where g % 0. With the help

of this transformation, the equations (8) are reduced fo the very simple form

(19) & o, o,

The possibility of carrying out the reduction (la) to the form (19) in a neighborhood
of a point where not all components of F vanish together with a similar (but not
simultaneous) reduction of (1b) is the basis of our theory of a "closed form" method
of optimal control, as we shall explain in the next section. The "closed form" will
involve only functions which appear in the initial value solutions of (la) and (1b)

3.4 General Method for Obtaining Switching Manifolds.

We now are in a position to return to the problem previously posed with
regard to the linear or nonlinear plant represented by (1) or by (la) and (1b). In
considering these systems of differential equations we consider three sets of vari-
ables as follows:

The first set of variables are the components of the original n-vector x, in

which we have the system (la) in the form,
(20) x=F(x)

and the system (1b) in the form,
.;

(21) 2=G(x .

The second set of variables are the components of an n-vector y, obtained by

a one-to-one transformation of class C' from x in such a manner that the system

(1a) appears in the simple form

(22) V. = 8., i+l,2,...,n,

while the system (1b) appears in a possibly much more complicated form such as
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(23) ¥ = K(y).

The third set of variables, components of an n-vector z, on the other hand,

leave the system (la) in a possibly very complicated form such as

(24) 7 = L(z)

but have the virtue of reducing the system (1b) to the simple form,

(25) Z, =8, i=1,2,...,n.

It is assumed that we have equations of transformation leaving the origin in-
variant, and valid in a neighborhood of the origin, which enable us to pass freely
from any one of these three systems of varisbles to either of the qther two. The
possibility of obtaining such transformations with the desired properties is clearly
indicated in the previous section, at least if F(0) # 0 and G(0) # 0, as we
hereby assume.

As a point is successfully steered into the origin, it must, after its last
switching, be on the half-trajectory of (la), or of (lb), which terminates at the
origin as t monotonically increases and approaches a certain terminal value T.

Of course, if the point was origina lly on either one of these half-trajectories, it
can be trivially steered into the origin with no switches whatsoever. Any other point
must first be steered to one or the other of these two half-trajectories before it can
reach the origin and must therefore experience a switching at some point of these
half-trajectories. Moreover, this switching may occur at any point of the half-
trajectories depending upon the initial position. Hence these half-trajectories

constitutes a one-dimensional switching manifold R,. It has two "leaves", R, 15
)
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the half-trajectory system (la), and R, ,, the half-trajectory of system (1b).
3

R, =R, , UR

1 1,1 1,2
For the sake of brevity, we will describe in detail only Rl 1 and the leaves
)
of switching manifolds of higher dimensionality on whose boundary R lies.

1,1

Similar considerations may be supplied by the reader for Rl o
2

From (22) it is obvious that Ry 41 when expressed in terms of the y's consists
of those points for which y <0 and vy = 0, for 1i=2,3,...,n. When we make a
transformation to the z's, these conditions take some such form as hi(z) <0,

h;(z) = 0, for i=2,3,...,n. We next write these conditions in a more suitable form,

by eliminating zq from all but one of these n conditions; the one remaining

condition is the one which expresses z as a function of 2z

1 ooy Zos hereafter

2’

briefly denoted by the (n-l)-vector Z. Assuming that this elimination can be

effected, we obtain (in terms of the =z's) conditions of the form,

(26) hl(z) <0, 1z = hE(E), n,(z) =0, i=3,4,...,n,

as both necessary and sufficient that the point z € Rl 1
b4

Now any point (not initially on Rl l) being steered successfully into the
2

origin via Rl 1 must have been proceeding along a trajectory of (lb) Just before
2

its last switching. Hence the locus of all half-trajectories of (1b) which terminate

on R muist constitute a. "leaf"

R of a two-dimensional switching manifold.
1,1 2,1

The detailed substantiation of this statement about R2 1 is similar to what was
2

stated above-in substantistion of the fact that Rl , vas part of a one-dimensional
2

switching manifold. From (25) and (26) it is clear that a point on R, , is character-
)
ized by the conditions
hl(Z) <0, z,< hZ(E), hi(Z) = 0, i=3,4,...,n.

When we make a transformation to the y's, these conditions take some such form as
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qﬁle(y) <o, qﬁee(y) <0, @¥(y) =0, 1=3,4,...,0. We next eliminate y, from all
but one of these n conditions; the one remaining condition is the one which expresse
y, asa function of ye,...,yh, hereafter denoted by the (n-l)-vector Y. Assuming

that this elimination can be effected, we obtain (in terms of the y's) conditions

of the form,

(27) q)l(y) <0, (pz(-y_) <0, yl = CP3(Y), (Pl(§) = 0, i:l{.,,_,,n,

as noth necessary and sufficient that the point Yy € R2 1°
3

Now any point being steered successfully into the origin vig R2 1 and Rl 1
) )

(assuming that it did not start on Rz,l)’ mist have been proceeding along a trajectory
of (1a) just before switching onto R2,l' Hence the locus of all half-trajectories

2,1 must constitute a "leaf" R},l of a three-
dimensional switching manifold. From (22) and (27), it is clear that a point on

of (la) which terminate on R

R3 1 is characterized by the conditions
2
?(3) <0, 9,(7) <0, ¥ <o (7), 9;(F) =0, i=h...,n.
This process may be continued by induction, yielding, for any positive integer

k <n, a "leaf" R, 1 of a k-dimensional switching manifold. This lesf is character-
J

ized by n conditions, k Of which are inequalities and (n-k) of which are

s

equalities. These latter may be expressed by equating to O certgan time-independent
first integrals of (la), if k is odd, and of (1b), if k is even.

A main purpose of this paper is to carry this procedure out in detail for the case
of the linear plant of order 4 in the special case in which all eigenvalues of the
matrix A vanish. In other words, the system considered can be presented in the
form (5) or (6) in the special case P, =P} =Py =Py = 0 (n+4). This example
should give a good idea of the general behavior of such systems even whem the p's

are not all zero, and our results obtained from a study of this simple example should
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approximate the results to be obtained when the p's are small. The reason for this
is roughly as follows:

Our methods are based on certain transformations between the x's, y's, and z's.
These transformations depend continuously upon certain systems of first integrals
of (la) and (1b), which are written down in temms of the initial value solutions of
the differential systems (la) and (1b). Now, if these systems depend continuously
on certain parameters, such as the p's, it is well known that the initial value
solutions likewise depend continuously on the same parameters. Hence our results

will be but slightly effected by small deviations of the p's from O.
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4.0 THE ADJOINT SYSTEM AND THE MAXIMUM PRINCIPLE,

Among the major steps in the theory of synthesis of optimal control systems was
that taken first by R.W. Bass (10c. cit. page 191; 1956) with the introduction of
a system of differential equations for certain ”conjﬁgated or "adjoint" vériébles
intimately associated with the variables of the system; see also the subsequent
development of the work by Descer. A second, not unrelated step was indicated in
1958 by Pontragin in the prbélamation of the "Maximum Principle" wherein the problem
receives a Hamiltonian formulation. For the convenience of the reader, a summary
of this theory will now be presented,

System State. A set of numbers characterizing the dynamical system to be con-

trolled is called the system state or position in state-space. It is assumed that

these numbers can be sensed instantly and precisely; in reality, stochastic con-
sideration, filtering and prediction theory enter at this point, but the overideali-
zation involved in this assumption is sufficient for preliminary designs. The system
state is represented by a vector x (or a "point" in n-dimensional Euclidean space
En), and the system's evelution with time is specified by the curve x(t) in the

n
state space E ).

System Dynamics. The evolution of x(t) is assumed to be determined by the

differential system

(1) x = £(x,c), x(0) = X5 (" = d/at)

where X is the initial state, and c¢ 1is the control vector.

Feedback Control Function. If the vector ¢ depends only on the state x, i.e.

(2) c = cfx)
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then we have instantaneous state feedback control.

State Acquisition Problem. A typical desideratum is that the system (l) evolves

s0 that, at some future time T = T(xo) > 0, the state attains the position

(3) x(T) = 0.

If this be true for every X in a region R containing x = 0, we say that the

system (1) is controllable, that R is the stability domain, and that T is the

transition time.

Control Constraint. A realistic assumption is that no control law is admissible

unless, for each x in R,
(L) c(x) is contained in U
vhere U is a closed, bounded, convex subset of E-. The control is saturated

if c(x) 1lies in the boundary of U for the state «x.

Performance Criterion. We may assume that, for every Xy the future path x(t),

0<t< T(xo) can be accurately predicted if c(x) be precisely specified. Hence
for each piecewise smooth function c(x) satisfying the constraint (), -we may
(in principle at least) compute any predicted path criterion of the type

T(x_)

(5) F=gx) =] alxelx)as

e}

where & > 0 is any desired smooth function of the instanteneous system state x(t)

and corresponding control c(x(t)).

Optimal Control. An optimasd-control law c(x) provides an absolute mindimum -

to ¢ (> 0) for every X, in R, relative to all other admissable control functions.
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If this control be unique, it is called the optimal control function.

Conjugate State. Suppose that @(x) is a smooth function almost everywhere

. - o o . = - e e .
(a.e.) in K, lrnen  graa W exists a.e, 1n K, and we call the vector

y = -g(x) = -grad #(x) the co-state of the state x.
Hamiltonian. For every state x, co-state Y,

the corresponding Hamiltonian

(6) H= H(X)y)c) = y-f(x,c) = G(X,C).

Maximum Principle. We define the function

(7) ¢ = E(X;Y)

for all y in En, by specifying that

(8) H('X,Y)E) = Max H(x,y,u).
uin U

Extremal Cpntrol. We call the control function

(92) c(x)
(9p) , g(x)

E(X,“g(x))

grad @(x)

an extremal feedback control function.

Synthesis of Optimal Control Systems. It can be shown that if

and control

c, we may define

(x a.e. in R)

c(x) be defined

everyvhere in R in such a way that (9a,b) holds, a.e., and such that x(t) is

continuous and its derivative x(t) is continuous from the right (i.e. x(t) = %x(t+0))

then the system (1) with this control law is optimal relative to the given constraints

and performance criterion.



Thus, in order to design and synthesize and optimal control system, given the
P
dynamics f(x,c), constraints U, and performance index alx,c), one needs to
derive or compute

(2) the stability domain R;

(b) the switching function glx) (for all x in R).

There are basically three distinct ways to do this, and correspondingly three
distinct types of control computers.
Firstly, .suppose that there exists a T = T(xo) >0 and a y(0) = -g(xo) such

that the TWO-POINT BOUNDARY-VALUE PROBLEM

e
|

(10a) = £{x,c(x,y)), x(0) = x

o’ X(T) = 0,
(10b) ¥ o= -f *(aelx,y))y + grad  yal(x,e(x,y)), ¥(0) = -glx_)
(lOC) g(xo)=f(xo,5(xo))) = 'G(XO,E(XO,“Q(XO)))

has a solution. Then

(11) y°f(x,€(x,y»: oc(x,-c_(x,y))

for 0 <t <T, and
(12) slx,) - gxad glx,).
We may readily solve problems (a) and (b) simultaneously by running (10)

"backwards in time" from the final state x = O with every possible co-state y(T)

compatible with (10c) and for every transition time T > O. Such a computation pro-

duces every admissable initial co-state y(0) (= -g(xo)) and every initial state x

in R 1in an efficient and non-redundant manner. This is the second method.
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The two-point boundary-value problem can be given in a concise and elegant

formulation. In fact, using (6), we may re-write equations (10a,b) as a Hamiltonian

system

o =
(153-) X = gr&d(y)H(x,’y,C) X(O) = X5
(ljb) :;r = -‘.grad(x)H(x,y,c), Y(O) = yO’
(13¢) c =c(xy), v, =-grad flx ).

The condition (l) then becomes the requirement that the initial value of the Hamil-

tonian be zero, i.e., that

(1) H(x,, v, clx,¥.)) =0,

while the result (11) states that the Hamiltonian is constant along any optimal

curve x(t), i.e.,

(15) H(x(t), y(t), c(x(t), y(t))) = o, 0<t<T.

The third method is more difficult to use but preferable where possible. This
is to find explicitly scalar function T(x) >0 and @(x) > 0 which satisfy a.e.

in some domain R the partial differential equations

(162) f(x,c).grad T(x) = -1
(16v) ' f(x,c)-grad @(x) = -o(x,c)
(16c) ¢ = c(x, ~grad g(x)).

\
We shall now apply the preceding theory to the problem of satellite attitude

control of an orbiting vehicle.




For the attitude control system under consideration, and for an arbitrary per-

3

missible performance index, a(ul, u2, u
optimal control function may be summarized as follows:

FUNDAMENTAL THEOREM. Consider the system

(17) xt = —p@xi, xi(O) =yt
(18) Jb - p®Ip = -g sen[ixq],
(19) v = -a®y - grad( i)a(xl,xg,x5,p) vy (0) = yi )
u
(20) 4= £ oy - K(plha - grad(w)a(xl,xg,XB,P)
i=1
where
K(p)rg = g [(J'lp)@q] -3 [(Jp)® q_] )
and
> Byt 0z g ()2 -
(21) z v Il + g I = 1.

1

For each t > 0, put

(22) ol = xi(t),

(23) w = p(t)

and define c¢ by

(21) e = c(u,u?,u%,w) - sgn G*q(t).

, W) the first method of computing the

(i=1,2,3)
(p(0) = 0),

(i=1,2,3)

a(0) = q

(i=1,2,3)

The control c¢ is permissible and optimal with respect to the criterion
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t
g = [ ads.

Not that as the initial vectors vary over the sphere (21), the states for which
c can be defined (22) - (24) fill the entire six-dimensional manifold.
”ui” =1, (i=1,2.), -0 < vy < o, (3=1,2,3).
Thus by integrating the system for a sufficiently dense set of initial conditions,
the optimal control vector ¢, can be determined on an arbitrarily dense set of

system states.



4.1 A General Two-Point Boundary Value Problem

The optimal control problem leads to an equivalent two-point boundary-
value problem which is stated as follows.
We are given n linearly independent vectors £i, (i=1,...,n) and n scalars
a; and Bj’ with i=1,2,...,p, J=1,2,...,9, and p + q = n. The problem is to
find n-vectors xo, xN and a value of the independent varisble (time) T > 0 such

that the differential vector equation

(1) % = f(x) (x in E%)

has a solution x = x(t) on 0<t<T which satisfies

(2) (1) x(0) = x° and x(T) = XN
. @)
(ii) I-x =ay, (i=l,2,...,p)
(—iii) IP+J.XN = BJ (j = 1,2’...,2 and p + q = n)

This is the classical two-point boundary value problem which has in general no

closed form solution. One practical way of solving the optimal control problem

consists in mechanizing an approximate solution of this problem. This can be

achieved by digital real-time computation.



4.2 Finite-Differences Approximation.

We want to determine a discrete approximation of x(t) » the solution of the
differential equation (1) of the preceding chapter with the conditions (2 1, 11, 1ii)
of the preceding chapter.

For same large integer N >0, finda T >0 and a sequence (xl} , (§=0,1,...N)

of n-vectors which satisfies

i o . +j N .
(1) xt =ag, (=000 ) =8y, (351,...,q)
and which minimizes the non-negative scalar error function p = p(xo,xl,,. .,xN-l,xN;T)
defined by
VMG el (T)erd-Lyfl2 o [ 341 L (T)., 441, f2
(2) 20= % I -zt (ﬁ)f(x‘] )” + I/x‘] - x4 (ﬁ)f(x‘] )// +
J=1

+ }[x° - x4 (%)f(xl)llg + //xN -t (-rl-‘)f(x -1)42.

Note that if p = 0, then, approximately,

(3) e, b - s, (30,1,...,1)
t.
x(t5) = x(0) + J “£(x(0))as, (3=0,1,...,N)
(o)
k-9



‘4.3, Iterative Relaxation Algorithm.

Let N be fixed. Let {x‘]’?l (j=O,l,. ..,N) be an arbitrary sequence satisfying
i o,0 . +j.  _N,o X
(l) £.x’7 = ai’ (l=l)“'JP) lp J'x 7= BJ’ (J=l,'”}‘1)) ptq = n.
j, v+l .
For (v=0,1,2,...) 1let {x‘J’v } , (J=0,1,...,N), be seguences satisfying

. .
(2) OV s (1m,.,p); PRIV

17 BJ’ (zj:l:--‘)Q.), ptq = 1,
and defined inductively by

j,v+l e d-1,v j j+1 .
() A e T SR B R CE T A

o,V 1 N
(%) TV+1 =o(x’", x ,V) cery X ,V)’
0,_0,v+l “%, 1,v ~o, N,v+l -
(5) ) s PeNr), P - ),

: ~,
(v=0,1,2,...) where FY, (j=1,2,...,N-1), @&, F°, F° are defined by

(6) I (x,y,z,T) =
= 1/2(x+z) - EE' {f(Z) - £(x) - f:(y) [Z—ﬂ} +
- »1/2(%)2 f:(Y)f(Y), (J=1,2,...,N-1),
N
(7) o =0 (x° xl, ...,xN)=a?~9 =

1
N-1 .

N L S e L D A A O Lo
N{jilﬁ )-£( )+ ( ) £( )]} ’
N-1 . .

z [Ilf<x3'l>vz+ Hf<xJ*1>//27

J=1

1]

L - 10
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L. 4., Fundamental Relaxation Theorem.

3 *
THEOREM. If the sequences {x‘]’? » (3=0,1,...,N) converge

i.e. if there exist

2

(1) x) = lim x3V
v—>» +wm

)

then {x‘]} » (3=0,1,...,N) is a solution of the finite differences approximation

to the two-point boundary-~value problem.

PROOF. Note that for j=1,2,...,N-1

2

() o= T () P -
e 1 O R R R b A L
R A R (%)f(xj)lf ool

Hence

(3) grad(xj)p - u[xj P EIT I xj+l,T)J for  (j=1,2,...,N-1).

(%) grad(xo)p =2 [(FO(XO’T) _%O(xl,T)J

(5) 8rad(XN)p = 2['§°(xN,T) - Fo(xN'l,T)]

(6) F-0m [0, ame |

Therefore, p has an extremum when

*There exist sequences which converge., The conditions for convergence have been
extensively studied by Richardson and other authors.
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(1) =PI W, ),
8 0, 0 “o, 1 ~o, N o, N-1
( ) F (X :T) =F (X )T)) F (X. }T) =F (X :T)
(9) T = (x°, xl, ceny XN).
b .13

2

(J=1,2,...,N-1)



4 .5 Liapunov Stability of Control Based on the Approximate Closed Form Solution.

i
=w®u P

~~
o

~~
[

(2) Jw + w®Jw = - T sgn[g:) +d

where T = diag (71, 7o 73) and where e’ g = oy

(i=1,2,3)

(i=l:2:3)

(i=1,2,3)

(3a) 0, =w, + [sinOltanOQJwa - E:os@lta.noejw5
(3v) o, = ]_cosol vy + sinG]J W
(50) é - in® _l COSO _l
3 LL,U 1%} __’ LCOSU J
Now use the control law
(1) S S [+l
99 7% 27, ( a,
1-— sgn[w.]
75 i
Choose the Liapunov Function
3 b)
(5) p= Z 1/2J(w) Iy ’ci‘
i=1 i=1
Clearly ¢ =0 if and only if 6, =, =0, (i=1,2,3). It can be proved
that
3
. 2 2
(6) $<- (/) = il + Ole, %, w.%)
4 - 1k



whenever

~
=1
~-

4, < /3 .

Consider the system (1) - (2), with (4). Define as in (5) and differentiate with

respect to time. Clearly

3 3
(8) P = iil Wi(Jﬁi) + ifl 7,580 0, &4

Now substitute J¥, from (1) and compute 61 from (4) wherein one can substitute
éi from (3) and Gi again from (1). Note that 6, =w, + (j(Oia, wie). Then

by use of (7) and simple inequality arguments, the result (6) can be obtained.
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4.6 A Steepest Descent Algorithm for Application to Determining Optimal Control Trajectories.

This investigation has been directed at making it possible to investigate metho-
ically ure of optimal lrajectories for the whole gamut of cases that arise.
Many of these cases have properties of nonlineari¥y in the part of the differential
equation describing the plant without the actuators. A numerical procedure promising
reasonably rapid convergence to a discretized solution of the boundary value problem
was sought. The special feature that it could be especially efficient in the in-
vestigation of a regionof a solution was required. From this definition it was
proposed to inVestigate the possibility of a steepest descent procedure. This in-
vestigation is now in progress with the development of computer programs for applying
the principles arrived at to several problems.

On the assumption that it is possible to construct a function on a space of a

dimension that is a multiple of the dimension of the phase space by the number of

points that must be chosen for a reasonably good trajectory, (1) that this function

is real valued, (2) that the gradient of this function can be analytically determined,

(3) and that this function takes its minimum value O uniquely for a best approxima-
tion to the solution, it is possible to construct a deepest descent algorithm. In
the case of the trajectory for both the system and the adjoint system. Much less
computation is needed than would be involved in direct relaxation or by attempting
to solve the system of linear equations that arise in such an approximation to a
boundary value problem.

Somewhat as a surprise to the investigators it turned up that no such algorithm
as the one being investigated had been applied in attempting to solve more classical
problems. Such problems are the case of matrix theory where it is desired to "dia-
gonalize" a matrix or the finding of roots of arbitrary polynomials. As the methods
cover these cases as well the the one directly investigated, the technique is first

being applied to the solving of polynomials. Here the ease of constructing examples

L - 16
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allows a thorough investigation of the technique, which then in turn is to be applied
to the finding of optimal trajectories. Thus, first the method is investigated then
the method becomes the tool of investigation rather than the object of the investiga-
tion. The following is a discussion of the procedure as applied to the polynomial
case. It is to be noted that the procedure makes none of the usual assumptions of
real coefficients as in the polynomial case, or of the symmetry or of distinct
elgenvalues as is usual in the case of the matrix. It should also be borne in mind
particularly in the case of the matrix that it is important to have an iterative
procedure for successful machine computation as the build up of error in the so called
direct methods can be prohibitive. (Actually there can be no completely direct method
for finding the eigenvalues of matrices of dimension greater than four).

The essence of Lhe procedure is to construct a function that is positive definite
at all points other than at the solutions where it takes the value zero. In the case
of a matrix, the function is real-valued and on the n dimensional space of the vectors.
Substituting a trial value for the starting vector X the gradient is determined.

The remaining problem is to determine the optimal distance along the gradient. The

solution of this problem requires finding the solutions of a pair of transcendental

equations.

In the matrix case (or in the case of the polynamial - the companion matrix case).
In the matrix case we have as in (1) where x is a vector A the matrix and ) is

a scalar, as the condition of an eigenvector. Examining the matrix row by row we have

the situation
(1) My = agx
where

Lo 17




&) X

(2) A= 1. X = {.
a X
n n

Now the condition that the A\ be the same for each X, is the condition for selecting

the eigenvectors, and thus define a set of eigenvalues as in

a;-x
(3) >"i = X. )
i
Xi = xj if and only if
a,x aj-x
(&) x, X, ?
1 dJ

then gives the condition for solution or equivalently (L), if

(5) uyy = xj(ai'x) - xi(aj-x) = 0.

The set of all these conditions is encompassed in the function

(6) () = Dy - Blxglagn) - ey (5 (& 5) - 7 (8,70)

and it is this function that is to be minimized. Note that the condition makes

no special case of nonlinear roots of the matrix or symmetry of any kind as well as

being independent of whether the coefficients, eigenvalues, or eigenvectors are complex.

The procedure followed to find the solution is that of steepest descents. Fig.T7

gives a picture of the procedure. On the contour map is the trial solution X, -
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The gradient of ¢ is determined at that point. Then the distance is determined

Ty in such a manner as to minimize the value that ¥ can have along the line de-
termined by the gradient. This gives the point X5 which is used as the new starting
value for the determination of the next improvement to the trial vector.

The condition for the optimum distance is embodied in
(8) yr + 2r(b cos ' +B) + £) + £ cos(f +q) = 0,
(9) 2r sin(2g* + B) + f sin (@' + a) = O.

These equations arise from the variation of y(x + c grad ¥(x)) where r, @' are the

of the complex number z. First the substitutions
bl ¢ _ B
(10) =g -3

is made. It can then be noted that a translation of ¢ by =n gives back the same
solutionss (The modulus n is just - 1). Only two quadrants are pertinent to the
solution. In Fig. (11) are shown the behavior of (8) and (9) over a 2 quadrant
region. The x's locate the solutions, of which there can be only 7 at most.

The solution 8A is either the real solution of a cubic with a single real root or

its continuation in the case that there are three real roots. On the solution 8B

the arrows mark the points where the solutions disappear off the real plane. A sole
solution as in Fig. (12) can occur if the ratio of f to b is large enough, Finding
these solutions would, of course, be tedious if this information were not known.

As it is, the algorithm would be difficult if a direct attack were made. If, however,
the ratio of b to f is adequately large, the diagram takes on the following

for Fig. (13). In this case, the solutions can be written down approximately by
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inspection.
The technique then is to chose a canonical value of ® and a ratio of b to
€ +f where & and f are kept constant and then using Newton's Method and the
r, §* arrived at by inspection determine exact solutions of (8) and (9). In
N steps b and w are incremented until they reach the values for which we actually
wish to solve. With each of these steps the locus of the solution is followed by the
procedure diagrammed in Fig. (14). At each point r, § is extrapolated to give an
approximate value and then Newton's Method is applied to correct this value.
What can go wrong is exemplified in Fig. (15) where the extrapolation can lead
to a close approximation of the solution on another locus for that step. The ensuing
step would locate a point on the wrong locus. To avoid this possibility a sufficient
number of past extrapclations are retained so that it is always possible.to extrapolate
two steps ahead as in Fig. (16). Whenever it is noted that there is a discrepancy
in the answer the extrapolated value is chosen. This accomplishes the double (l) test
of determining that the extrapolations are valid prior to trouble so that the
decision to have confidence in them can be made; and (2) later to select on the basis
of this confidence the correct point. We will later see that this extrgpolated
value can be used in another way. |
The procedure starts with a pair of solutions. The choice of such pairs is
determined by the fact that if they disappear as solutions, the disappear simultane-
ously. .In general, the two loci will converge together as in Fig. (17).
After converging, they will disappear. The test used here is that when the loci
have reached a distance d less than three times the most recent extrapolation
distance for the extrapolation of both, r, ¢ then the solutions are decided to be
of no interest. (Of course, locus 8A is an exeption). How these solutions can dis-
appear is sketched in Fig. (18) where it will be noted that eventually 8B and 9B no

longer intersect. Also shown is how 8B will eventually disappear from the real plane

altogether.
b - 26
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Fig. (18)
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Finally, it is possible that there will be no solution whatsoever in the case
that ® takes on the value of an integral multiple of % . In this case Fig. (19)
goes into Fig. (20) and the solution on the negative branch of 9A no longer appears.

This is essentially the procedure, the best distance is chosen at each step and

the whole iteration resumes. In an Appendix the algebra of the algorithm which is

actually pretty straightforward and an annotated Fortran Program for the polynomial

version appear.
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5.0 COMPUTROL SYSTEMS SYNTHESIZED

Asn o7

5.1 An Iterstive Analog Computer that Solves the Euler-Lagrange Tyo-Point

Boundary-Value Problem,

In the preceding section the theory of fuel optimal attitude control was applied
to yield three algorithms which may be synthesized into computrol systems. This
section gives the preliminary synthesis of these three control algorithms with due
consideration also given to systems reliability, control actuastor configurations,
system transducers and remote cammend communication (system input/butput).

5.1.1 Three On Line (On Board) Computers for Optimal Attitude Control.

In order to realize fuel optimal attitude control it was proven
in the previous section that "bang-coast-bang" (#1, 0, -1) actuator signals are
applied to the reaction jets for coarse control during large reorientations, then
followed by linear control (actually regulation). whith set point biasing of the
control moment gyros to hold at the‘origin. It also has been shown that there are

three distinct methods of determining the switching signals that will optimally bring

the vehicle to the origin. These are:

Method 1. Pre-computation by the adjoint-system method.

Method 2. Real time solution of the two-point boundary-value problema

Method 3. Approximste closed form solution of the Hamilton-~Jacobi partial

differential equations.

This section gives the initial logical design of three digital computers which
respectively realize the three aforementioned methods of determining the optimal
switching trajectories. These are: |

1. The Stored Function Computer, which constitutes a table look up of the

switching signals as a function of where the vehicle is in state space,

the function (algorithm) determined by Method 1.

iR



2. The Relaxation Computer, which gives a powerful yet basically redundantly

simple camputer realization of the two-point boundary-value problem (Method 2)

solved faster than real time.

3. The Closed Form Computer, which is inherently the simplest realization of
optimal control since the cdmputer is derived from Method 3, the approximate
closed form of the Hamilton-Jacobi egquations.

Potentially all three of these camputers could be employed in a final attitude
control system because of the powerful interplay that exists among them for producing
adaptivity and relisbility (redundency of different kind). However, each camputer
(or method) is also potentially camplete unto itself. An extremely important result
of this study will be the answer to the trade—off possible in the final control

computer design.

5.1.1.1 The Stored Function Computer. Fig. I shows a block diagrem

of the stored function computer. The steps required to arrive st the final form
of this camputer include the computation (throughout phase space) of the value that
the switching function should have an adequately dense set of points. Fraom this
information items are determined. The first of these items is the form of the in-
formation that must be designed into the computer as permanent memory in what would
normally be regarded as an addressable computer store. The other important item
required is information for the design of a decoding net that by directly setting
the actuator values for a lérge part of phase space will reduce materially the

size of the store.

To make clear what kind of a caomputer is involved turn to Fig. I. Coordinsate
pulses arriving from the analog to digital converters are fed into the Counsers.
Three Counters .are shown here. For the attitude control.ccmputer six Counters will
be needed to describe the six important state variables. Scaling of the rate at which

the pulses arrive can be done by adjustment of the analog to digital converters.
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This scaling is the feature that mskes the computer input simple. The operation is
of the following form. Pulses are constantly sent to the Counter at a rate proportional
to the reading of the Sensor. As they arrive they are added to the Counter. The
same pulses are entered onto a Delay Line. At the point of exit from the Delay Line
they are subtracted from the Counter. Thus the Counters always contain the number of
pulses in the Delay Line.

Correction of the Courters to avoid accumulation of errors.can be carried out
by periodically clearing the Delay Line and the Counter simultaneously. Recalibration
of the whole input system can be accomplished by the sensing of phase space points
corresponding to Counter carry points and perturbing the Sensor adjustments in a

mannﬁﬁﬁgepending upon whether the carry is sensed before or after the check point is
sensed.
k|

The output of the Counters, which constitute a point in quantitized phase space,
is fed into a Deconding Net. The Decoding Net will either determine a Memory address
or an Actuator setting. The Memory address is determined in the case that the
elaboration of the .Decoding Net is not sufficient to provide the correct Actuator
setting.

As the Actuators can be set into any of 27 states five bits of information are
required. It is estimated that a maximum bound of storage for the correct settings of
a million point in phase space will be required (5 million bits) and this information
will densely fill phase space when full advantage is taken of the symmetries (rotations
and reflections) that exist. Present day reliable large volume (information) stores of
this order are in existence that require less than 1 cubic foot and weigh less than
75 pounds. The useful form of these five bits of information per point in phase space

is in the form of three sets of triple valued states. That is, each of the three

| Actuators should be either full on in either of two directions or else full off.

The simplest version of this machine would be to have the settings for all of



the points in phase space stored in the Memory and to have the outputs of the Counters
directly delermine the address to be referenced in the Memory. Though the simplicity
of this computer is certainly appealing, the size of the Memory may still be reduced
to make the computer minimal. Large areas of phase space have the same setting and
this information can be directly incorporated into the switching circuitry of the
Decoding Net. Full examination of the switching function throughout the phase space
will give a clear understanding of the best possible match of switching circuitry and
Memory so as to reduce the volume and weight of the total machine.

5.1.1.2 The Relaxation Computer. The two~point boundary-value problem of

the direct and adjoint systems is best solved faster than real time utilizing the
relaxation algorithm given above. Furthermore by using an Aeronca proprietary computer¥*
organization the computation can take place faster than real time with basically siow-
speed, simple computing units. The reason this is possible is that a multiplicity of

the simple computing units are simultaneously working in parallel under one program
control. Inherent in this parallel organization of simple units is not only the in-

trinsic reliability because of the units themselves (because of slow speed) but also the

increased system reliability through the use of redundancy at a functional level. With

this approach, when a unit is detected to be malfunctioning it is switched out and the
load is handled by the remaining units. This can continue until there are not enough
units left to handle the relaxation computation in the time required. Further, when
this has occurred, the remaining unit can be caused to behave like the closed form
computer discussed in the next section.

Before the parallel organization of the simple units for solving the relaxation
algorithm is discussed, the simple unit will be explained. The unit is of the form of

the simple computer shown in Figure I. Alpha and Beta are two seperate banks of

¥See Aeronca Report 12-1 entitled "Parallel Systems Organized Computer" (PSOC).
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memory that can be read or written into simultaneously from the buffers. The buffers
are the inputs to an arithmetic decoder, whose function is determined by the remaining
inputs from the gate control lines. Two other inpuﬁs to the Arithmetic Decoder are
from the internal state memories. The first of these is a carry state and the second is
another "on-off" state. .One of the gates is set to give the output of the Decoder to
a hub of either the alpha or the beta Output Buffers. At strobe limit this value is
used to set the Output Buffer. The other Output Buffer is set to write back the
information that was in the corresponding Read Buffer. From the simplest viewpoint
the Unit should be regarded as a simple serial two address computer. .The purpose of
the two addresses is to determine the two operands, one being obtained from each of
the two memory banks. The result is then returned ﬁo one of the meﬁory banks.
However, there is no program stored in this computer aé there is no provision for the
decoding ofboperations. The choice of the operands and the memory locations is deter-
mined by the values of the Gate Lines and Address Lines coming from external decoders.
A rudimentary programming facility does exist in the machine in the form of the N
possibility of the machine being able to take one of two states. The setting of this
state in turn modifies the setting of the gates.

This absence of the complete facility of thg computer is by design, the Unit
being one of many Units organized together as in Figure II; where to the right of the
Diagram are dotted line block uﬁits. It is the configuration of tﬁisvdiagram that is
proﬁosed for the relaxation computer: To the left is a Stored Prqgram Memory that has
the steps of the program that must be carried out by the éomputer in the solution of
the algorithm. The successive steps of the Stored.Program are selected by the Stored
Program Counter. Each of the Storéd.Program instruction is decoded by the Gate Se-
lection Switch, the Information Shift Control, and the Memory'Seleétion Switch.

First note that the Gate Seleétion Switch and the Memory’Select%on Matrix open

the same gates and select the same addresses in every Unit. The Information Shift
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Control also gives the same information to each of the units. In effect the operation
of each of the units is exactly the same and the sole effect determining a different
operation of the different units is that they each have different information stored
in them. Thus it is immaterial how many Processing Units are in the machine, the
operation being indifferent to the length of the string of processors to the right.
One point not brought in Figure I but designated in Figure II is that the
Buffers are connected together as shift registers, that is the Alpha Buffers form a

shift register the length of the Unit chain and the Beta Buffers form s shift register

again the length of the chain of Units. Information is uniformly transferred from

Unit to Unit by means of these shift registers which operate independently. The control

of these shift registers is what is determined by the Information Shift Control.
Note that the sensors are connected to this information channel.

A sequence of "OR" gates at the top of the diagram provide the channel by which
information is collected from the processing units to be transferred to the Master
Evaluation Register. Information in the Master Evaluation Register is consulted
to determine the decisions that must be made by the stored program. The consultation
is generally in the form of inquiring as to whether a stored constant is exceeded by
the contents of this register and an affirmative answer is manifested in the form of a
decision to instruct the stored program counter to accept the next stored program
constant as a new setting.

The remaining anomaly, namely that the information from the Units is "orred"
together, and thus would seem to be non-unique in its form when being transferred to
the Master Evaluation Register, is resolved on realizing that the logic of the Unit
contains a state setting. At the time of the transfer of the information the setting
of the states of all of the units save one is such that information will not be trans—
ferred out of them. Thus a unigue signal of a single Unit is read by the Master

Evaluation Register. Which Unit is on at the time of transfer of information is

5-9



determined by internal computations carried out by the seperate units.

Computation of the relaxation aslgorithm proceeds in the following manner. ZEach
of the Units is identified with a point in the quantization of the trajectory. The
Computation of the corrected value of the coordinate and adjoint coordinate values
is computed .simultaneously in each unit. As the previous values of the nearby
points are needed they are obtainéd by uniform transfer of information through the
shift registers. At the end of each iteration a computation is done to determine
the value of the differences of the last two iteration and all of the Units save one
carrying the largest value of this number are turned to the "off" state. This sole

Unit that is left "on" transfers its information to the Master Evaluation Register

so that during the course of the next iteration it can be decided whether or not the

computation has bee completed. When the computation has been completed and the informa-

tion needed to determine the setting of the Actuators is transferred to the Master
Evaluation Register where it is used to. determine the setting of the Actuators.

The selection of the number of Units that must be "flown" can always be optimized
on the basis of necessities of the mission. In particular, a given number of real
units can be multiplexed to provide an interger muiltiple of this number of virtual
units. With a multiple identification of points with units the important feature

of rapid propagation of the boundary-value effects can be retained if an identifica-
tion scheme such as that outlined in Figure III is used.

5.1.1.3 Closed Form Computer. The closed form computer has the character_

istics of the general digital computer with a restriction of its characteristics to
only those needed for the solution of the problem. In particular, in that the

computation is based only upon the present value of a set of sensors, no large store

of information is required. The data that is kept has only the purpose of providing

heuristic checks. Stored logic will suffice for the program since only a single pro-

gram need be considered. The magnitude of the accuracy will be a function of the fact
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that the control is only an approximation to optimal control and the computer need

be no more accurate than the approximation. The control must be designed to carry
out certain operations with optimal efficiency. In this particular computer the
arcsine and the square root must be efficiently camputed. This entails all of the
registers for rapid division process as the arcsine is best obtained by a continued
fraction expansion and the square root by a more general use of the division hardware.
The basis for this computer will be the simple Unit discussed in the previous section

with the addition of the special commands above.
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6.0 EXAMPLES OF COMPUTROL SYSTEMS.

6.1 The Control of a Rotating Servomechanism.

In *he effort to derive a switching characteristic applicable to prgctical
transducers in & medium power servomechanism, the following calculations have been
made.

Consider the following configuration for motor and load, in which the following
idealizations have been assumed:

a. Motor transfer function is linear and second order.

b. Gear train is free of backlash.

c. Load parameters are constant.

d. External torque variations never exceed the stall torque of the motor.

See Figure 1.

If the servo torque-speed curves have the following forms

Figure 2

end El >>E2 > E5 ..

and since

ST -,
T=FEA*t5% ®

then let




External torque, T,

Figure 1

Pictorial of Motor and Load Configuration
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q _ . o |
x5 K
Hence the developed torque
- .!
(1) T, =K B -K§

The load torque at the motor shaft
J f
N L o L -
(2) Ty, = ( — * Jm) 6' + ( =+ f ’9 - Ty

Equating (1) and (2) we have the system of differential equations

I . f.
—_ ' - At
(3) 5 tJd | o+ s+ I, tK ] 6 =K E. + 1,
n n
Let
J T
L d
(—2+Jm —Jy "E—Td
n
f
(_L+f ox) -
2 m n
n
f' = né
KeEin
- =Fsgn o {the extremal constraint}
Hence (3) becomes
(&) J6 + £b = F sgn o + T4

(92N
(%]



If the solution of this equation is to follow & given input, ei(t) so0 chosen that

F+T

(Lka) ei(t) = a + bt, Ibl < —f—é (runaway velocity)

within any finite interval, thenit is convenient to define a new variable, e(t),

the actuating error

(5) e(t) = 6,(t) - o(t))
clearly le(t)] -0 as o(t) -6, (t).

After substitution of (5) and (4a){ (4) becomes

(6) Je + fé = (fb - Td) -Fsgno.
We then desire that the choice of ¢ which will bring e(t) and its derivative
to the origin from any initial position (eo, é.)

Let us solve (6).

Set
e(0) = e,
é(0) = &
Now £
31
e(t) = A + Be +§[(fb -Td) -Fsgn O']t
f -§t 1
e(t) = - 5 Be tF [(fo - Td) - F sgn o]
then
e =A+B
o)
. f 1
eo--3B+§[(fb-Td) - F sgn o]
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hence
B-L [(fo -T)) - F sgn o] - U
f2 d f 7o
Jd . J
A=e +5& - 7z [(fo - T,) - F sen o] .
Finally ‘

(7) e(t)=eo+%éo-§§[(fb —Td)Fsgno]+[%[(fb-Td) - F sgnol - L e )e

+ % [{fb - Td) - F sgnolt

]
3

oy

f
-=t
(8) e(t) = % [(fb - Td) - F sgno] - % [{(fb - Td) - F sgno - féo]e J

If we eliminate the parameter, t, the resultant equation defines two families
of phase plane trajectories, where the phase plane is defined to be e(t), &(t) plane.
These two families differ in the assumed algebraic sign o. See the following

sketches wherein it is assumed that b, the input rate, and T the disturbing

d,
torque, are held constant throughout the trajectory.

Note that only that part of the trajectory which is heavily shaded in the sketch,
will bring the system to the origin with no torque reversal. This then is the desired
final trajectory. Let us solve equations (7) and (8) for this trajectory by elimi-
nating t, and setting the endpoint equal to the origin, é(t) = é(t) = 0. Hence,

[

(8) becomes

[(fo - T,) - F sgno]

(9) ed -

Fol = o]

[(fv - Td) - F sgno] - e

and
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1

S[{f -T7.) -F sgno] - ¢
(9a) t = % log i d °

7 [(fo - Td) - F sgno)
Clearing (7) and (8) we have

J J [(fb—Td) - Fsgno] - féo]
= + =& + — - -

(10) O=e +3& 2 [(fb Td) Fsgno] log [(fb’Td) ¥ seo]
Equation (10) is a double valued implicit function of (eo, & o).

See illustration on following page.

Note that in the I and III guadrant solutions, it is implied by equation (9a)
that we reach the origin in negative time, i.e., an unrealizable solution.

In other words, we require that equation (10) holds in reality only if

(11) 3gng = sgn e

Hence

(12) 0

i

0]

+
H| Y

: L [(P.-fb) + Fsgn & ] logl1 + o
€o - 2 a” Sen €, € [(Td—fb) + Fsgn éo]

becomes the optimal trajectory, and indeed it will be shown, is the switching curve.

If in the derivation of (12) we let the endpoint be given

e(t) = e
é(t) = 0
then
fé A
J . J . °
(12a) e} =e, tF e, - ;5 [(Td-fb) + Fsgn &_] log {} + [(Td_fb) + fsgn éohJ}



Figure 4.

Second Order Switching Boundary



which implies that the system comes to rest with an overshoot of ey Note that

the sign of ey is also the sign cof the applied torque which will cause the system
to evolve to a point of interception with the ideal trajectory (12).

Hence, if we set e =90 and the applied torgue equal to, F sgn o, then we

generate the complete closed loop idesl switching characteristic for arbitrary initial

conditions.

fe
Jd . Jd o)
= + — - —— . ol o) ® 2
(13) c=¢ F %o £2 [(Td.fb) T Fsen eo] lcg Jl * [(Td_fb) + Fsgn éo]

For step response only, with no torgue adaptation we have

feé

(14) o=e +°: {sgn éo) log (1 + _F9 )

]
1

&
o
&

o}
Hy
NofH

See illustration on following page.

Equations (13) and (14) are completely rigorcus with respect to the assumptions
listed at the beginning of this section; however, we note the sensors of a rotating
servomechanism are really measuring the variables of = congruence class‘}namely

8,=6 + 2mn (n = any integer) |
is a solution of the equations.

Representing 6 = 6 mod 21 is equivalent to mapping the phase place on &
cylinder. See Figures 5, 6, 7 and 8,

The construction of a computer analog of this switching criterion is mon-trivial.
Several structures present themselves, however. Perhaps the most generally useful
method is the analog synthesis. |

This difficulty with the multipli-connected rhase. surface is avoided in part

by the selection of components.
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Figure 5.
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Figure 7.

Truncated Phase-plane Plot



Figure 8.

Cylindrical Map of Phase-plane (ambiguity removec, .
(The shaded regions represent o > ¢
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Yor example we note that the motor and load are in a closed system in which

it is assumed

ITd - fb] <F.

Clearly then ,é, < %E is the worst case condition. If the e axis is
expanded through choice of gear ratio then the semi-infite strip of Figure 9 can be
represented in a finite box with as few as two discontinuities in traversing the
range of e or é. See Figure 10.

Another source of difficulty arises from the fact that no synthesis will be
perfectly realized. Analogous to this are the well known oversimplifications of
the signum operatcrs,the inherent nonlinearities of the plant, and the inaccuracies
of the sensors.

These realities lead one to believe that the system will have several torgque
transitions in its evolution to the origin. Usually this multiple switching is a
limit cycle or a chattering regime or both.

We have, in our analog synthesis program, observed these phenomena in an attempt

to put practical limitations on the acceptable tolerances of the servo components.

‘Because our multiplier cabinets have been inoperative since the outset of this

program, we have not as yet closed the loop on the analog synthesis of equation (13).

We have, however, approximated equation (1L4) with straight line segments.



Gear Ratio.

Figure 9.

Jarthesian Plot of Phase-plane Showing High

.



Figure 10.

Cylindrical Plot of Preceding Pege Showing
High Gear Ratio.
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List of Symbols used in §.1

torque

disturbance torque at motor shaft
disturbance torque at locad
developed torque

load torque

inertia of load

inertia of armature
equivalent inertia at load
load friction

motor friction

equivalent friction at load
gear ratio

motor torgue constant
motor damping constant
shaft displacement

load displacement

terminal voltage

switching function (or control function)

. K E.

|1 | R [ [ IO |

il

e 1n
n

input command

error
base of natural logarithms

initial displacement of input command S
signum operator = 0 if (o = 0); = +1 ir (g € 0)
rate of change of ei(t) -

time

initial error

initial error rate
undetermined coefficients of differential equations
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2 Theory of Optimal Attituds Convrol and Stsbilization of an Orbiting

Vehicle.

For most purposes a satellit

{

Or space vehicle cannot be considered as a
simple point particle. It must {a= least} be czonsidered as a rigid body, possessing
three mutually perpendicular directions called "principle axes of inertia". The
axes are unit vecotrs fixed in the bhody; &reir directions are determined by the
body's geometry and mass distributicn. Tr= grivciple axes are taken as originating
at the body's center of mass znd zs copstituting a right-handed coordinate system.

Specifically, the principsl sr:iz 4:- n1® ve. oo

1 2 3 : ]
(1) u, ut, ul w L, (i=1,2,3)

2
(where u < =u-u and -

s2alar product) which are mutually perpendicular

or orthogonal,
i N . s
(2) utewd =0 iF s # 3. (1;J=l;2:5)-

- 8

-
=
AV
NN
~

(3) U = au ; n, u”

The frame U specifies the orientation of tre edy, relative to the inertial space E5

. . . : . i <o .
which we now proceed to define, Ws: assume wrat =zck vector u ig specified by its

components in an inertial frame I,. An insrtisl frams is an orthogonal coordinate
system fixed relative to the so-calls=d "fixed stars’; the {non-relativistic) equations
of motion of Newton and Euler are by definiticn wslid in such a frame. Let the

2 3

. 1 .
unit vectors e, e, €° be given by

£oL 1R



1 0
(1) el - , e - , e =
0
Then the frame
(5) I = (el. <%, 2% - qisg 1,1,1)

is specified by & square array of numbers, or a matrix. which in this case con-

e . . N . ; ; i . .
stitutes the identity matrix. We zpecify each vector wu relative to 15’ i.e.

. 1 .- N
(6) ut o= uie + uze + u;ea, (i=1,2,3)
where ug = eJ-ul, (j=l,2,3) are the components of u'. Now we can regard (3)

. . . . 1 2 .
as a matrix equation, in which u’, u-, u5 are the column vectors of the matrix U,

and in which the results (1) and (2) are given more concisely by the statements

(7a) U¥ = U"l, UKD = ¥ = I
where ¥ denotes matrix transposition (i.e. systematic replacement of the jth
column by the jth row). The (equivalent) two relations of (7a) express the fact that
the matrix U is orthogonal. Every orthogonal matrix preserves Euclidean length;

5

that is, for any vector x in E-7,

(T0) "d«” = "X” .

Indeed [|Uxff® = Ux-Ux = x-UxUx = £ = X% = ”x”2 it can even be shown that if

(Tb) holds for every x, then (7a) holds. In fact, it should be clear by now that




any orthogonal matrix defines tre priceipal axis frame of some orientation in EB.

9]

Hence we speak of orthogonal oriecrn“stion matrices as defining the orientation, or

Z
~

attitude, of a rigid body in iner+isl spacs E {which is given by the frame 13)'

The matrix U is specified by nire components u}. However, by (7) there are

six independent relations between ‘hese COmporients, namely ”tgﬂ = "u2" = "ujn =1,
1 3 1 . \ .
u 'u2 = ue-u3 = ujeu = 0. This means that we shculd be able to specify U fully

by at most 9 - 6 = 3 independent parameters. In fact, it can be proved that for

every orthogonal matrix U there correstonds & vecror u in Ea,

such that the columns of U, u” = u (u), (i=1,2,3), are given by

o) 2,
(9,) ut = cosh, sind, + sinB. sing. cose
-1 =1 A ‘1 2 3 5
51n9l 51n85 - 30581 51n82 cos@5
-coség sme5
(9,) W = cosd, cosf, - sinf. sind,. sind
2 1 3 1 2 3 s
31n61 cos@3 + cosal 51n92 51n95
sinep
Z
(93) u’ = -sinel cosf,

cosf, cosH

The geometrical interpretation of the (modified) Euler angles el, 92, 65 is immediate:

/: PO
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|
(10) U = Ul(elj:n Ug{eg) 11'5(95) |
where
1 0 0
1 .
(lll) U = 0 cosd;  -sing, s
0 sinel cosel
00562 0 51n92
(112) u? - 0 1 0 s
-51n92 0 cose2
cosh -s5ing. 0
3 s
(113) vl - sinf, cosf; O
0 0 1

Thus, in order to move the frame I, into coincidence with the frame U, we proceed

73

as follows. Firstly, rotate I5 about; the e3 axls through an angle 83, obtaining

an angle 92, obtaining the frame U2U5, Finally, rotate the frame (U2U3) about
its first or ul axis thrcugh and angle Bl, obtaining the frame U = UleUB.
Note that as lull -0 the matrix U = U(u) —>13. In fact, by (3) and (9),

|

|

|

|

|

3 3 2 |
the frame U (93). Now rotate the frame U about its second or u~ axis through

(12) Ulu) = 1, + OUhuliFy,

' |

where the notation (D(p) means "< Rpa for all o <&, for some fixed numbers

k>0, &>0".
In aircraft work it is customary tc take ul from the center of the plane to

Z
its nose, u2 out the right wing and u” wvertically downward. One then refers to

G-



the independant rotations Ul(Gl), U2(92), Ua(ea) for small Jul] = (9 + 92 + 0 )1/2

as roll, pitch and yaw maneuvers.

Now let u =u(t) (hence U =U(t)) be specified as a function of time t,
O0<t<+w. Let ° = d/dt denote the operation of taking rate of change with

respect to time. Now we can define the angular velocity vector w of the frame

U =U(t) by

(13) W = (1/2)(11l x ol + w? X 85 + o X 1'15),

23 =~ UsVp
(14) uXv = UgVy - UpVy
Vo - Ho¥y

(Note that in general vV = 0, vhile in (3), w = ul®u2, w? = u3®ul,

ul =u @uB.) Using some elementary algebraic identities, it can be shown that

(13) is equivalent to the Poisson Eguations which refer to rigid-body kinematics:

(15) ot = w@ul, (i=1,2,3).

For any vector v = (vl’VE"VB)*’ define the matrix

0 vy v,
(16) K(v) = vy O -V,
o vy 0
6 - 22




Note that X(v) is skew-symmetric, i.w. K* = -K. Then it is easy to verify the

identities

(17) u@v = K(u)v

K(vu, K(v)v =o0,

whence (15) is equivalent to
(18) U = Kw)u, U(0) = U,

The specification that the initial orientation of the body, UO » and of the
history of its angular velocity, {w(t) I 0<t< +oo}, is completely equivalent to
the specification of the history of the orientation {U(t) I 0<t< +®}. In fact,

defining A(t) = K(w(t)), the orientation matrix U satisfies the differentisal

equation
(19) U= A(6)U, U(0) =U, (a%(t) = -A()).

It is easy to see that if U_ is orthogonal, then any solution U(t) of (19) must
be orthogonsal.
In fact,r (UXU) = URU) + UKD = (AU)MU + U%AU = U¥AXU + UXAU = -U%AU + U*AU = 0.
Hence U*(t)u(t) = U* U, = IB. Furthermore, (19) can have at most one solution,
for if U and § botn satisfy (19), then by linearity AU -7 _G satisfies (19),
while (AU)O = 0. Thus

t
(20) N(t) = [ A(r) au{~r)ar.

o}
Now define for any matrix M its norm IlM" as the smallest number such that
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(21) Mok < ] s

for every vector x. It can be shown that in general [[ABJ < ||alf ¥BY , etc. Thus,

defining @ ={AUN , we have from (20),

t
(22) 0 <o(t) <+ [alr)p(r)ar

where a(7)(= JA(~)I) is non-negative, and where & = x < 0 is any arbitrary number.
(From (2), & =0, but we leave k general in (22) for other reasons.) A funda-
mental lemma from differential equation theory asserts that, as a consequence of (22)
it must be true that

t
(23) 0 <o(t) <k exp( [al(r)ar), (0<t<+m).

o
Since in (20), &k = 0, we have proved that A U(t) = 0, i.e. that U(t) = U(t) for
0<t <+m. Thus we have proved that (19) has at most one solution, once we have

proved that (22) implies (23). As an illustration of Liapunov's Second Method we

give a direct proof of (23). Define

i t
(24) V(t) = (v + [ al(r)e(r)dr) exp(- [ alr)dr.
Note that
t t
(25) ' =a&)&+fahhhhﬂ—¢&)embfodﬂh)

whence by (22), ¥ < 0. Therefore ¥(t) < ¥(0) = x, which is equivalent to (23).

In conlusion, we shall prove that (19) has at least one solution. In fact, define

6 - 24



the matrices UY(t), (3=0,1,2,...) by

(26) () = U, U3+l(t) =T, + ftA('r)Uj('r)d'r.
(o}

Now for any fixed T >0, there is (by continuity) a number & = x(T) such that

JAC)d <k for 0<t <T. Hence (using fut - Uoﬂ < kt), it is easy to prove by

induction on j that

‘41 . .
(27) Nu?™(6) - v (e)ll < (xt)/5) (3=0,1,2,...)
for 0 <t <T. Consequently there exists the limit

(28) U(t) = 1im U‘j(t)
J = +o

(for each fixed t > 0), and it is clear from (26) that U = U+ szUdT, i.e., that

U satisfies (19). In summary, we have proved that Poisson's Equation (19) possesses

& unique orthogonal solution U(t) for 0 <t < +oo.

We have gone into detail concerning integration of Poisson's Equation (19). This
subject has a direct bearing on the manner in which the orientation of a rigid body
relative to inertial space may be measured; and secondly, it is necessary to perform
an at least approximete integration of Poisson's Equation on-board, in faster than
real-time, if optimal control is to be achieved without use of a "closed-form" solu-
tion or a "pre-computed stored solution.™

In"dead-reckoning" navigation, as practiced with great accuracy, for example,
by Columbus, one computes one's present geographical position by means of a precise
knowledge of one's initial position and a continuous record of one's speed and

direction of motion at all subsequent times. In other words, if one's position be
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specified by the radius vector x in E , then one has for the kinematics of a

point particle

(29) x=v (* =a/at)
where v 1is the velocity vector of the particle; hence one's current position is
computable from

(30) x(t) = x; + [* v(t)ar.
e

In dead-reckoning navigation one simply performs an approximate numerical evalua-
tion of the integral in (30).

Now in a space vehicle it is possible to measure the body's angular velocity
vector w(t) directly. In fact, three orthogonal rate gyros fixed along the body's
principle axes will measure, respectively, Wi Wy and w5. Furthermore, at some
initial time the body's orientation Uo may be determined precisely by optical
measurements involving the fixed stars. Consequently, an on-board computer capable
of solving Poisson's Equation (19) in real time, where A(t) = K(w(t)), cean pro-
vide & continuous estimate of the body's orientation, based on inertial sensors,
between the times at which a more precise optical determination could be made.

- With ground based computers, and arbitrary time available, Poisson's Equation
can be integrated to any required numerical accuracy; in fact, to an accuracy such
that only the erros in measurement of w affect the accuracy of the computed U(t).
The feasibility of such accuracy in real-time integration of (19), by an on-board
computer, depends both on the merits of the numerical analysis used((26)-(27)-(28),
though valid, is not particularly efficient or rapidly convergent) and on the

state-of-the-art in computer technology. For many reasons the proposers regard

6 - 26



the development of such an on-board computer as both desirable and inevitable.

Note that if (9) is inserted in (13), one finds that

é +é sin 6

1 p) 2
W= e _ ¢
(31) 6, cos 6, 93 cos 6, sin 6, .
62 sin Gl + 93 cos 92 cos 61

Thus, if 6, # 7/2, and using @ = ('el, C 93),

(32) u = E(u)wy (92 )"é '"'/2):
1, sin el tan 92, - cos 91 tan 92
(33) . E(u) =] 0, cos 6,, sin 6
0, sin 61 cosec 62, cos el cosec 62 .

Clearly, E(u) = 13 + O(llul). Therefore,
(34) a=w+ O (Jullwl).

The question of whether use of Cayley-Klein's U or Euler's u is the best
method for specifying & body's attitude is related to the question of integration
of Poisson's Equation. Suppose that the angular velocity vector w 1is constant,
i.e., that w = w_. Then U= K(wO Ju can be integrated readily; in fact

K(wO )t

(%5) U= K(w )U <=>U(t) = e U,

where, in general, we define

6 - 27



»

BANG -BANG TIME-
OPTIMAL CONTROL

— et —— L ——

-1

8
6 + yeng{oc] = 0
1 =
=0+ — 0
o > 1] -
/ (6,,6,)
+1

]_]2(sgn[ol] + sgn[azh

A ; .
e+§7éle!, x> 1
e+§elel.

+1
-1
g
\
1 -
BARG -CCAST -BANG
FUEL.VS, -TIME -OPTIMAL CONTROL
6 - 28 Op =0C

Bl Bl R O B B B B R e
;e O

o



(36) S +-§3(t3/3!)aj .

(it 1s easy to see that (36) converges for all t; 1in fact ”eAtH s e”A”t,

0st<+o0.)

The main drawback to the use of U = (ul, u2, u3) is 1ts redundancy, caused

by the fact that U*XU =TI i.e., that

3)

“u2H =1, ulew® = 0, w = ul xu? .

(37) [yl

On the other hand, use of (35) contributes to a method of monitoring reliability,

K(w_(t))
since we can check the accuracy of the computation of e © by checking the

validity of (37). 1In contrast, the use of the set of Euler angles u, while non-

redundant, leads to & nonlineasr Poisson Equation, even when w is a constant, namely
(38) = E(u)wo, u(o) = u_.

It does not appear possible to find directly an explicit closed form solution

u(t) = £(t, uo) to (38), although we can in theory invert the relationship U = U(u)
of (10) by means of an implicitly defined function u = u(U), and then set

£(t, uo) = u(eK(wo)tU(uo)). However, the actual discrepancy between (35) and (38)

is not as great as might appear, since we can on the other hand find explicitly an

independent set of first integrals of (38). Recall that a scalar function o(u)

is & first integral of (38) if o(u(t)) = qJ(uo) for 0 st<+ . Simllarly, a

vector h(u) is a first integral vector if

(39) h(u(t)) =n(u)), (0st<+o0)
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Now we claim that
Wy (u)
2
(%0) v ru (u) = U*(u)wo

wofua(u)

is a first integral vector of (33). 1In fact,
(41) d(h(u(t)))/at = ﬁ*wo = (K(w Ju)hw | = UK(w_Jw_ = 0.

Although each component of (39) is a first integral, they are not independent; in

fact, obviously, [h(u)ll = [luxw || = [w_].
° ° K(w )t
In this connection, note that U(t) = e must be an orthogonal matrix by
-K(w_)t
virtue of the skew-symmetry of K. In fact, clearly, U-l(t) =e ° since
1 K(wo)(t-t) K*(wo)t —K(wo)t 1
= e = I3, while U* = e =e = U ~. This fact suggests

the approximate integration of Poisson’s Equation (18) by the following piecewise

constant or step-function approximetion. For a very small sampling period <1, define

(k2a) U(t) = UJ, Jtsts (3 + 1),

(42p) gt eK(w(jT))TUJ, (3 =0,1,2, ... ).

Whether or note w(jr) is measured with perfect eccuracy, K is perfectly skew-
symmetric by construction, whence each U‘j is automatically orthogonal to the extent
that eKk has been computed accurately and to the extent that the accumulation of

round-off errors in passing from Uj to Uj+l has not become serious. For very
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small 1, the series (36) can be successfully truncated after the first term, which

leads to

(b2e) W - e kGG« (B), (3 =0,1,2, ...).
In fact, such a w4 approximately orthogonal because (I3 + TK)* = (13- 1K) =

(I3 + 'rK)"l + (12), by virtue of the C. Neuman resolvent series

(43) (15 + )" - I, + T (-1) (zx)d
3=1

which converges for all |t| < 1/|K].

The proposers feel that a more careful exsmination of the propagation of truncation

and round-off errors in the numerical scheme (42), in conmection with the state of
the instrument art (threshold, drift rates) in w-sensors and certain new computer
organization (cf. Aeronca's "parallel systems" or "relaxation" computer) will estab-
1lish the feasibility of a new type of on-board computer for real-time integration of
the Poisson Equation.

Turning now to the dynamies of rigid bodies in space, the virtues of the Euler
frame U will be manifest. Let 8y denote the total external torque applied to
the body's ol exis (i =1,2,3), and 1let g = (gl, 8o g3)* denote the total
torque vector. (Note: g 1is expressed now in the U frame; to express g in the
1nertial space E3 we must use the vector g = U*g = U~ g.) Next, let J be
the moment of inertia of the body computed sbout the ul axis, (i = 1,2,3,), and

note that in the U frame the body's inertia tensor can be represented by the matrix

e

_ _ 1 2 3
J = diag(Jl, s J3) = (Jle > I, J3 ).
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Now

low, if J

is constant, the evolution in time of the angular velocity vector w

is governed by Euler's Equation, which together with Poisson's Equation is
(bha) U = K(w)u, U(0) = Uy or u=E(uw, u(0) = u, U=u(u);

(44b) J%+Mﬂ&=g,w®)=%,(&=®.

If g =g(t) is specified only relative to the inertial space B by g(t), then
g = Ug(t), and we must adjoin to (L4v) the Poisson Equation. However, if g(t)

is defined only relative to the body, then (k) can be integrated independently of

Poisson's Equation.

For example, if g = g(w) has the property that

(45) w-g(w) <0, (w#£0)

then w(t) 50 as t -+ 00 . In fact, using Liapunov's Second Method, let

(46a) ? = (1/2)w.Jw

and compute that

(46b) P =weJi = e K(w)Iw +w.g <0, (w #£0),

since

W K(w)dw = K*(ww-Jw = -K(w)w-Jw and K(ww = 0.
A similar effect can be obtained by altering the geometry of the body's mass
distribution, in which case J is not a constant.
In one satellite (TIROS) welghts were released, on cords, which moved away

because of centrifugal acceleration. However, as the weights moved away, increasing
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the body's radius, JO increased, which decreased W In theory one could obtain
LS — 0 by allowing Jo -+ 00. In practice, this was done by releasing the weights
after wo was reduced to an acceptable level. Another similar scheme seriwusly
proposed for attitude control involves extension or retraction of lengthy telescopic
booms made of wide rolls of thin but stiff plastic. Such schemes can, however,
change a vehicle's attitude or angular velocity only if LA # 0.

For this reason it is often acceptable to regard J &as a constant, treating the
effects of & % O by replacing g by g-&w, i.e., by regarding the term -Jw as
an external disturbing torque whose effects must be overcome by proper disposition
of the control torque g. If J 1is changed deliberately but rather occurs randomly
(e.g., pilots moving about in a manned spacecraft) then this is doubtless the correct
method of treatment of the torque ~Jw.

-While on the subject of external perturbing torques, it should be noted that
for a high-altitude satellite these torques are quite small. They include
(i) residual atmospheric drag;
(ii) meteoric dust impacts;
(iii) gravitational gradient torques;
(iv) rediation pressure from sun;

(v) megnetic field interactions and induced electric
charges.

In the case of the Transit satellites, permanent bar magnets of exceptionally power-
ful geussian strenght have been actually used to damp w +to zero precisely as in
(45) and (46). More generally, the interaction of torques (iii) and (v) have led to
various phenomena observed experimentally in the attitude histories of one Explorer
satellite and in a Tiros satellite. (The satellites possessed magnetic field both

by virtue of residual permanent magnetism and by circulating currents in their
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payjoads). Here we have the phenomenon of an external torque which cannot be specified
except in relation to the surrounding inertial space. Specifically the earth's gravita-
tional and magnetic fields can be regarded as having known histories and futures in EB;
even in & first approximation, regarding the earth as a fixed object in E3 and the
satellite in a known almost periodic orbit (including precessional effects due to the
earth's oblateness and consequent non-spherically-symmetric gravitational field acting on

the satellite considered as a point mass); we must represent g as of the form

(47) g = g(t, U)
where g(t, U) is almost periodic in t, but where we cannot consider Euler's Equation
separately from Poisson's Equation. The Explorer satellite experienced an almost-periodic
large fluctuation in its angular velocity w which is still regarded as a mystery by the
cognizant NASA physicists. The Tiros exhibited a very large fluctuation both in w and
U (the ranges of 61, 62, 95 exceeding 900) with an almost-period of many days; sub-
sequently NASA and RCA scientists performed a numerical integration of (4l) with a suitable
term (47) based on torques (iii) and (v) and obtained close agreement with the previously
recorded observations. There is still not available, however, an adequate analytical
theory of this subject, nor a method for treating it other than by numerical integration of
(bh). Nevertheless, it has been seriously proposed that the attitude of a satellite can
be controlled (in particular, by radio-relay from a ground-based control-computer) by
deliberate variation in circulating current loops within the satellite. Hitherto no scienti-
fic approach to the synthesis of such a system has been suggested; however, it will become
apparent that the techniques discussed below by the proposers are sufficiently comprehensive
as to include even such a subtle synthesis problem as this one.

From the point of view of control synthesis, where the actuating torques are to be
independent of the phenomena (i)-(v) above, and independent of J, it seems best to lump

all of the torques into a single torque regarded as an unknown forcing term or "random
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input" d(t). Thus the idealized equations of attitude control are

Ua), & = Blulv, u(0) = u,

1l

(48a) U = Kw)u, U(0) = Us or U

(48b) Jw + K(w)dw = g +d4(t), w(0)

if
=

3

We can assume that many properties of d(t), in particular mex[d(t)||, can be predicted
from statistical studies of the environment; however, d(t) is to be regarded as unknown
otherwiée. The idealized attitude control problem can be stated as follows. Given & desired
terminal state (Ul, wl), Tind & control law g such thai, from the given state (Uo,v

\
o’

the state (U(t),w(t)) evolves for 0 st = T until

(49) (u(t), w(t)) » (U, ) as t T (T s+ o).

There are many variations on this theme. If T is a fixed a priori we speak of terminal
control. It may be impossible, for small T, wunless we pay the cost of a sifficiently
large control torque g. In scientific satellites, T need not be smally; in fact, it
mey be minutes, hours or even days. In future menned spacecraft, especially in military
operations (or in automatic orbiting anti-ICBM satellites) the transition time T can be
critical; hence we expect the importance of time-optimel control to increase. At any rate,

in non-terminal control, the time T is not given in advance but determined implicitly by

(49). If g 1is continuous and bounded, then necessarily T = + co. If g is allowed to

be discontinuous (as, e.g., with reaction jets switched on and off) then we can take T

to be finite.

If g = g(t; v Ub) then we speak of pre-progrsmmed or open-loop control. If one

measures the state (w, U) continuously and if g = g(w, U wl, Ul) then one speaks of

feedback or closed-loop control. The virtue of the latter is that, when Aw = wawl and
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AU = U-U'  are small, most control laws g can be expressed as g = g{4w,AU), whence it

is not necessary to use a different law g for each state (wl, Ul) whose acquisition is
desired. Furthermore, if g{0,0) =0 but g £ 0 for |law|® + laul|? # 0, then a feedback
control operates until the measured acquisition error is zero, which in view of the imper-
fections in all measurement, computations and mechanizations, is epistemologically preferr-
able; for then the only thing certain is that zero error will be attained at least within
the threshold limits of the sensors used to establish w and U. However, feedback control,
though more accurate, is also more expensive, more complex and hence less relisble then pre-
programmed control.

We can also consider the efficiency of the control law chosen. Normally, various a

priori constraints on g are available such as
(50) lgsl =7, (205 1=1,2,3).

We can define as a performence criterion, or basis of comparison of possible control laws

satisfying the constraints, an integral such as

(51) T =W, u, 8) = T afw,U,g)at
o

Here « = a(w,U,g) 2 0 1is a non-negative smooth function. One can then define an admissable

{g} as optimal relative to 7 if it minimizes 7 in comparison with other admissable

{g} ’s .

In Aeronca’s Air Force Contract AF 33(616)8285, Monthly Progress Report No. 6, page 35,

the following result is proved.

THEOREM. For any admissable performance criterion, the rigid-body system (47) can be optimally

controlled.



Now if (g} is admissable and T is well defined for all (wo, uo) in some domain,
then we may define x = (u¥*, w*)* = Q:), and so define 7 = W(xo; {g}) for al11 x, 1in .

Then we can define a vector

(52) p = p(x) = -grad .y

for each {g}. Now we can write the attitde control system as

(53) X = (J_lE(u)W[-K(w)Jw + g(x)]) = F(x,a(x)), x in .

The content of the statement (51) 1s that 7 = 7m(x) is a Liapunov function for (53). In

fact, by (51)

(54 ) ar(x(t))/at = <(x) < 0.

If a(0) =0, then T =+ 00, If Q(x)2 & >0, then m(x(T)) =0, i.e., x =0, for
some T s TO/S.

Thus we define

(55) H = H(x,p,8) = p-F(x,8) - a(x; g)

The equivalent statements (51) and (54) amre also now obviously equivalent to the statement
that
(56) H=0.

In other words, a control law g controls the system (53) and defines a performance index T,

if and only if the associated Hamiltonian is zero.

Furthermore, among all admissable control laws (g}, i.e. » laws for which H = 0, that
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one (or ones) is optimal which maximizes H relative to the constraints such as (50); in

fact, if the control law g is such that H(x,p,g) = O, then g is also optimal if and

only if the associated Hamiltonian is maximal, i.e.,

(57) H(x,p,g) =H= Max H(x)P,5)°
eyl 7y

In practice, (57) determines the optimal g as a function of x and p = -grad(xjn. Let us

call this function g(x; p). Inserting this into the statement H = 0, we have a partial

differential equation

(58) H(x,p,g(x, -grad T)) =0,

the Hamiltonian-Jacobi egquation which determines 7. Explieitly,

(59) f(x,8(x, -grad T)) gred T = "a(x:é(xy -grad m)).

Although this equation appears to be formidable, the constraints Igi] = 75 usually require
that g be piecewise constant, i.e., that Igi[ =74 (However, if a(x, g) 1s quadratic
in both x and g ,i.e, ax,g) = x°Cx + g-Qg, then in certain regions g will be linear

in x.) In this case we can piece toegether 7(x) from solutions of the equation*

(60) F(x,k).-grad T = -a(x,k)

where k 1is an arbitrary constant such tmt ]kilz 7i, The proposers have completely, in
all details, solved the problem (59) for control of linear plants (F = FOx + Flg). For the
case of symmetric satellites J; = J, they have solved the preliminary problem (60) and
hope, in due time, to correctly piece together the known functions w(x,k) into the global
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definition of w(x) on s 1in which case there will be available a closed form solution
for the synthesis of optimal satellite attitude control systems.
Another method for computing the optimal g(x) is based on the recent dis.

covery that if one defines a family of control laws g = g(x;u) by

(61) & = -ered g H(x,p(x),8), (0%u <+ o0)
then
(62) %T = - {Tﬂgra.d(g)HHadt < 0.

Hence as p —+ 00, 7 decreases to its minimum and g(x; u) evolves to the optimal g(x)

.

This steepest descent computation is suitsble for a faster-than-real-time on-board computer
such as Aeronca’s Relaxation Computer, which for each measured state x almost instantly
computes the optimml g(x) by integrating (61) with an arbitrary initial control law
g(x; 0).

If one wishes to obtain truly high performance, one should take the control law
g = g(u,w; d) to be a function of the random disturbing input d, which is not known and ex-
ceedingly difficult to measure directly. However, a time-optimal self-adaptive servomotor
giving great gains in performence can be obtained by regarding d (which for our Optimotor
is the input rate, and for the Saturn space vehicle is the crosswind velocitx) as piecewise
constant and approximating it by indirect measurements utilizing more readily observed variables

For example, if we regard g and W as observable, and 4 = d(6) constant for t-t s 60 s t,

then from (48)



(63a.) d =

Bl L

{(Tw(t)w(t-1)) + ft K(w(6))iw(6)de - ft (6)ds}
t-T t-1

/¥ nw(e), &s))as.

I

t-1
In particular, if we use a closed form
(63b) g = g(w,u,a)
for optimal control of (48), then the control law
(63c) g = glw(t), u(t), /* n(w(e), g(6))do)

t-1

will provide an optimal nonlinear feedback law rendered optimally self-adaptive to random

disturbances by means of nonlinear integral feedback. Notice that for a sufficient large

integer N,

N-1

6}+ £ h - T t . k3 + 2
(64) [ pene =g = nl - my) + OUya))

t-1

which indicates that one can mechanize (64) quite readily by means of a sampled-data control

computer with a memory capacity for retaining the system state for N sampling periods in
the past.

A detailed example of (63b) and (63c) will be presented below in equations (82)-(84).
Consider now the mechanization of the desired control law g. The torque g is to be

produced by actuators, and the dynamics of the actuators mist be considered. Of course, the

simplest method is to use pairs of reaction Jjets, in which case we may write
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(65) g = G sgnfe] G = diag(r;, 7,, 73)

(where by sgn[c] we mean (sgnlc]).e’ = elcc/]eioc], (i =1,2,3)). The major consideration
regarding the use of (65) is that the phenomena of time-delsy dead-zone and hysteresis (pre-

sent in any physical relay or switch) lead to & control system in which, after nearly attain-

“ing the desired state, the system’s state oscillates or "hunts" around it in & small steble

limit-cycle. (Even if a dead-zone is employed, the limit-cycle always exists when the dis-

turbing torque 4 # 0).

Several effective methods for analytical study of the amplitude and frequency of the

. 1imit cycle as a function of the characteristics of the actuators and sensors are given in

Aeronca Technical Reports Nos. 60-14 and 60-16.

Consider finally the question of sensing the satellite's state (U, w). Even if we know

i

precisely the desired control law g = g(u,w), we must mechanize it by using in (48), not

this g but rather

(66) g

i

g (U*) W* )

where (U*, w*) constitutes an epproximate measurement of the state. In the past it has been

customary to assume that the sensing instruments obey linear laws, e.g., that

(67) U, = K(w,)U,, "W, + Ry, + Cw, = Gw

where R &nd G are diagonal matrixes of positive elements. However, for the acquisition

problem this is not adequate as we have proved quite rigorously.

In measuring a physical macroscopic quantity, something in a way similar to what is
described by the Uncertainty Principle of Microphysics takes place. In fact, when the

quantity being measured is relatively small, the measuring instrument alters that quantity
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(and eventually other dynamical variables of the syst 2 egree which cannot be reduced
below certain natural practical limits. A detailed examination of the dynamics of satellite-
borne inertial instruments establishes this fact quantitatively (see Aeronca Final Report on
"Optimal -Nonlinear Systems for the Attitude Control of an Orbiting Vehicle," contract AF
33(616)8285).

Regarding selection of performance criteria, we say that while time-optimality is basic
to many military missions and should not be neglected, criteria regarding fuel-mass expendi-

ture or energy cost may be paramount in the average acquisition maneuver. However, it mmkes

no sense to consider either of the latter except as a trade-off against time, for otherwise

an infinitely slow maneuver uses the least fuel or energy.

In the use of jet reaction control

(68) = E(u)w, JIv=-K(w)Iw + Ge +d

we shall employ either

T ,
(69) m =" (@ +ujel)at, w>o,
0
where |e| = c-sgnfe] = ]cli + ic2| + [c3|, in which case we obtain a discontinuous control

c = -sgn[p] which minimizes 7, = (transition time) + u(fuel-mass);

1

= [®[A(w-Jw) + pc-Ge)ldt, A >0, u >0,
(o]

(o) T,

in which case we find a continuous control law, necessitating throttling of the jets for
minimization of (3).

An important result in this connection is the superposition Principle for Euler's angles.

In fact, if in the preceding we choose ul’l, ue’l, uj’l) = (el, e2, e3) = I3, then we

obtain a standard control law.
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(71) c = "‘Sgn[8]7 g = g(eli 92: 95,1 Wls wg: WB) .

The control law (71) drives the rigid-body from any initial state to rest in the standard

orientation u(T) = w(T) = C, i.e.,

(72) 0, (T) = 65(T) = 65(T) = w) (T) = w,(T) = wy(T) = 0.
It is of considerable importance that the control law

. 1 1
(73) g = 8(6,-0,", 8,0, 65-651, W, Wy, ws)

drives the body optimally to rest in the orientation

1
l b4

2 3

(74%) Bl(T) =8 62(T) = 8, GB(T) = 657, w(T) = 0.

The availability of the superposition principle (73)-(74) is quite convenient; however,
there is no such principle available if we abandon the condition that w(T) = O. Thus,
optimal control to a slewing state w(T) = wl, cannot be obtained merely by using
g = g(U-Ul, wawl); rather the control law has the form g(UAUl, w,wl).

The second possible computrol system relies on solving the two-point boundary value

problem with an on-board high-speed computer. Studies indicate that of the numerous schemes
proposed for this the most efficient is the Relaxation Method described below in Section

The third method is the closed form solution technique for optimsl control system

synthesis. 1In the sequel, we shall derive the linear and quadratic terms in the power

series expansion of the optimal control law and prove that this Approximate Closed Form

yields a stable control system which is quasi-optimal. A preliminary design of Aeronca's

Closed Form Computer will also be presented.

For time-optimal control each jet-actuated control torque should either be given by

the signum of + 1 or -1. Such a control is called BANG-BANG control.
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In 2. 3.2 a discussion of BANG-COAST-BANG control fuel -mass-minima] -control with a con-

crete example from attitude control is given. From this discussion a control law stable as
a simultaneous 3-axis quasi-optimal control law in some neighborhood of the origin is
developed. 1In practice we may, for example, attain this neighborhood by using the Stored
Function Computer, then switch to the Relaxstion Computer or the Closed Form Computer, for

bringing the body to the state wherein the linear vernier control is to apply.
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7.0 Conclusions and Recommendations.

It is now clear that the theory of optimal control is able to yield closed form
expressions for the switching surfaces. That is, the theory has given us the condition
of the driving of the actuators and from this condition it is possible to state the
switching surfaces for an admittedly small class of plants. Further while this class
of plants is small, it is general in the sense that the phase space can be of arbitrarily
high dimension.

Now examine what is meant by Optimal Control. By this is meant a control that will
give the best performaence with respect to some constraint. That expressions for the
switching surfaces are available means that it is possible to know the procedure that
must be followed to obtain the ultimate performance, but more so it is possible to
have insight as to how to best aprroach this performance in view of more general con-
straints that arise with a real plant which are not so easily stated in anlitic ferms.
Further it is possible to have some criteris of performance in the selection of a
feasible control system, where it is not possible to make the feasible control optimal.
In essence it is now possible to begin the development of a "rational" synthesis
procedure.

Above in Chapter 3, areas of attack have been suggested. These procedures were
suggested from the standpoint of simply pushing the problem of constructing the
control surfaces. Here the more general question of developing a "rational" synthesis
procedure will be examined.

First there is of course the problem of pushing the theory toward developing Ccontrol
surfaces for more general plants. But there is another direction in which the theory
can be enlarged. Now that expressions for the surface are available, it is desirable to
know what can be done with them. In particular, it might arise that in the control of
a nonlinear plant that one would want to use,the surface that would arise from locally

linearizing the abstract plant for every point in phase space. Would this give a control
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law and if so under what conditions for the plant. Further if such a procedure
did make the plant controllable, by what performance criteria could it be determined
how good the control is.

Another of the observations that is to be made about the results now in hand is
how unwieldly they become for even the cases of small order. On the other hand, it seems
that there will be methodical procedures for generating the surfaces. It seems that a
situation is arising that is not amensbls to ordinary analytical techniques. A step
toward more abstract methods must of necessity be made if the information required is
to be elicited. The designer is not going to have statements at hand in a form simple
enough so that he will be able to immediately go to a computer and generate the data
with which to make his decision. Rather it looks like he is going to have to go to the
ate the stulements that he wishes to examine, and subsequently
have to use the computer to scan the statements to deliver the criteria he seeks.
Prior to the possibility of this, much more sbout the abstract qualities of the expressions
for the switching surfaces must be known.

The recommendations are then just an expression of the above comments.

I. That work be continued toward the development of expressions for switching
surfaces for more general plants.

II. That techniques for generating and analyzing these expression by the use of
computers be developed as an adjunct to recommentation I. and for the purpose of de-

veloping a "rational"synthesis procedure.

III. That the design of a specific plant or plants be carried out as a focus

for learning how to integrate the theory and techniques now known.




APPENDIX 1
The polynomial

(1) X 45 x4 eee g = 0

has the companion matrix

(2)
-5, 0 1
o0 l =8
-5 L] O

Each eigenvalue A of the matrix satisfies the relation
SZ = \Z
for the eigenvector =z.

Specifically, for the eigenvector having first term = 1,
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It 1s to be noted that an if and only if relationship exists between (5) and (6) for non
' zero z i's. More pertinent is that the condition of =z being an eigenvector makes all

l ui,j equal to zero. By the same token the function

.(7) V=% u,.u
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'will also be zero under this condition. As a sum of moduli it is obvious that ¥ can only
l teke values 2 than zero at points other than eigenvectors.

The one remaining possibility that Yy could be zero is for

.(8) Z=0

lwhich is eliminated by constraining Zl to be equal to 1. Finding the points at which
'ﬂr = 0 then finds the eigenvectors of the matrix S.

The procedure that is used is that of steepest descents. An arbitrary velue of 2

'is chosen. The gradient of ¥ for the arbitrary Z computed and then the best distance

along the gradient is determined. This pair,the gradient and the best distance, give a

lcorrection to Z and the process is then repeated until a final converged value of 2Z
is obtained.

The algebra of this procedure follows. First the gradient

(9) | w=%

I-2




I Variation of the ¢ and gathering the coefficients of the varied components of 2, 5z i

l (10) Sy = erz(ij(azinJ + Sngi-E‘)zjni-Bnin )ﬁij) = 2R(2r)

gives these coefficients.

l (11) 2r

% (dz,n,z.n, + dn,z.z,n.~8z.n.z.0
ij( 173717 g i i) J 1Z1 J

- iBnizjzinj - ESzin:j jni - ESnjzinni
+ sznizjni + Snizjzjni)
i o
(12) k = }i: ]zil
i 2
1/ "'E‘ Inil
l A= i‘. n,z,
3) v =k Zn.on, + $22;0z; - AZngbzy - AZz,®n,
1 B - - - -
l (14) 5 4% =R, ) - An, + 4z, -Az, Yoz,
l (15) VW =kn'+ fz - An - Az"
l Improving Z by the vector K'Vv in the direction V = W, gives the polynomial
= 7 + 3 + rt - {; s » '
' (16) U 5 (z, +r vi,(nj. r vj+l) (zj +r vj)(nj +r viﬂ.)
I-3



(17)

where

and for

(18)

where

(19)

uij = ai r' + Bijr + YJ.J
o, = (v,v VoV, .. )
J ij+ jifl
6ij = ( 1V341 = Z3V34 T OV, - m VJ)
Ty = (g - zgny)
- 2 - i S s 3
Ve Ry v )@ E 4 By )
b - b 2y _ .
Ir'l :Z'L:jaijaij - lr'l (C-lBl ) o aO!I' l
1] r'zi:jaijéij = v % (c(e + E)-ED-BF) = allr'lzr'
— 1 ' 2
lr l lJBij - a'lr Ir I
2
[:r'lgz:j 51J 13 = |r* l (c(a +b) + EC + EC ~ AB-AB - - |p{=- [F[ ) =
1 hyd = 2 o Y g
T ijaijrij r*“(CE-DF) = r 83
-2
T 2§Jalj 15 = r' a.5

I-h

2
o lr']



' v 1 - DA) = r'a.
§351J7ij r'(aE - DA) = r 8,
* ﬁjﬁijrij =Ty
zY..T., =8b-jA|2 =
T3'1371 %

and

=1
]
il
<
il
o

Q
i
e M
<
Ny

It is to be noted that the equation is a polynomial in both r' and r'. As =' is not
an analytic function of r' a straightforward solution is not availsble. In pursuing a

solution the equation is first simplified to the form
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-

(20)

where
(e1)

(22)

(23)

(2k)

Finding the solution in this form is not pursued, rather a transformation to the

variables

,l&

|

+al!|B(ra+ Fa) + 1'% s 1% 4 [t % + T +Ta+e=o0

r=r' +a
lr'l2 = ([rjz -Ta - ra + ,ala)

r' =r - a, T''=r -a&a
r’2=r2—2ar+a2, ?‘2=5:_'2-25Tr+a)
;rﬁ + 211 %8 + 2lnl %5 = Ir)* - 2[r12(Fa + 13) + 2[r)? a1 ?

+T%° + 2'1"2(3[2 + roa2 _ 2 s} 2(?9. + 18) Hal)1L + zﬁ(r)rla - ]rlza

- r%m o+ rlal® - alr,2 + T8l 4 rla) 2 - a sl 2) + Ea(YIrIE -F% - Irl%s

S -4 ¥ e I LS L

1=
2% - a?) (= 7%)
2 - a?) (= 77

1) 2(- 11al® + ¢) (= ¢ rl®)
r (hﬁla'e - 28b + &c + a) (¢ -f.r)
T (balel® - 2Bb + &% + a) (= £7)

e =Y,

(4,4), is made.




a = !r]
¢ = arc tan = imaginary
T real
and r =d(cos @ +1i sin ¢)u&
B = |n]
_ imagina
A = arc tan W real
F = |£]
- f imeginary
C = arc tan T real
() ¥ = dh + dEB(ezipe_iA + e-2i¢eiA) + d2§ + dF(ei¢e-ic+ eﬁi¢eic) + e
and since cos @ = :—g-(ei@ + o i® )
(26) ¥ = dh + d2(2B cos(2@-A) + t) + 24F cos(B-C) + e.
: 1
S tti - R ' = - - .
cutne peg-ia
-1 an
=3 A-C
(27) ¥ = dh + d2(2B cos 2f' + &) + 2d4F cos(f' + ) + e = 0.

We look for points where V¥ is stable with respect to both 4 =and ¢, for such are the

minima we seek. By varying ¥ with respect to both variables, we find points of zero

variation.

(28) 0 = ka’ + 2d(2B cos a@' + &) + 2F cos(f* + w))
0 = -4a®B sin of' + 2dF sin(f' + w)

(29) @ 0=23" +a(2B cos 26 +E) + F cos(g + w)
B: O = 2dB sin 2¢' + F sin(f' + o)

I-7




where these two curves intersect are the soluticns to the system. We choose the extremum
yielding the lowest value of ¥ and with it correct Z. Thus we arrive et a new point,
for which ¢ is less than any previous velue. The procedure should converge rapidly.

Solving « and B, then, is the primary complication. The graph of the function

in the significant range n(g) sfzs (n+ 2)%

i1e neY

n(z) ‘ T

with solution points indicated. By initially setting B large with respect to
f and €& , and by moving T to a canonical position, we obtain a graph whose

solutions may be estimated closely by inspection.

18
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Then, by changing B and o by small increments, we can step back to their original values
Breal and a}eal and follow the loci of all the solution points. Thus can all seven

(possible) roots be found, and the best chosen.

Two things could go wrong. First, near the intersection of two loci, one locus might
change c;urse and start to follow the other. To handle this situation, we save past values
of 5(d, #) and compute sin A, were A is the angle between the last and the present
gradient at the point of solution. Should sin A increase sharply for two consecutive
steps, the course is assumed changed and the tracing is resterted,this time with B end
@ increments half as large.

A locus might also leave the real plane. Since the two points of intersection of
two curves disappear together, these two loci are traced simultaneously, and should they

approach each other so closely that their coincidence is imminent, they are discarded

together. The algorithm uses Newton's generalized method to converge on solution points

along the loci.



The equations

‘l

f(xl’ X2, oy Xn/=0

it
(o]

G(L_L) x2: coey xn) =

h(xl, Xpy eesy xn) =

f
o

whose simultaneous solutions include (xls’ Xpgs ooy xns) can be expanded about any

point O = f(xis’ Xpgs eee) ﬁsf(xl, X5 eees xn) + %gi (X1~xls) +-%£ (xg-xzs) + oeee
2

d
0= g(xls, Xpgs ces) g(xl, X ) cee) +~§§l(xl—xls) + ... .

Under the circumstances that a set of similtaneous equations is to be solved and
& good approximation to & solution is already known,the method of Newton, in a generalized
form, can be used to improve the solution. The technique is to expand each of the
functions about the approximate solution in a Taylor's expansion and then,discarding all

but the linear terms of the expansions,proceed to solve the set of simultaneous equations

that arise. Say, that it is desired to solve

(28) o' 5

]

24" + d(2B cos 26" + £ ) + F cos(f' +w) = 0

(28a) B

24B sin 2¢' + F sin(g' + o) = 0

I=10



we obtain
,. X
v {4, @)
(29) d-d sol. = (@, ¢ . 4
-8(a, g') §
o o
o 5,5‘ = Jacobian
o '
(30) g sor. = 3 - @ 2
E -5, 9
Jacobian
where
(31) = 6a° + 2B cos 28" + ¢

%, = LdB sin 2f' + F cos (' + w)

Iteration of this procedure will quickly converge to an arbitrarily close approxima-
tion to the solution if the starting approximation was adequately saccurate.
A similar procedure can be used to keep close to the locus of the solution of & set

of equations,as the coefficients of the equations are changed. Actually the procedure

I-11



that follows can be applied %o the following of any contour of the solution spece and is
particularlized in this case toc be the following of the locus of the solution.
For the finite difference stepping prccedure,

(32) M=%A‘b+§%m

o -Fw L

where from a(d, g, B), a{d, @, w), B(q, g, B}, B(a, £, ©) we get by finding the co-

efficients of the variations

+

€ 7 My

(33)

5154
slg

+
1
I
O

-4

A U
e el

il
(@}

+

B 1y s Ry
gy M gly e

Now setting

(34)

B Bl
e Ky

gives

I-12
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o - aa-aai
d 3B d
op = AB + !Am /3
23 3%
x

where B = 2d cos E,d

% = -F sin(f + o)
% = 24 sin 2¢

%= F cos(f + w)

end AB = (B; ;¢ = B g )N

& = (o canon - o real )/N

where N steps are taken to find the solution for the exact equation.

These stepping equations can then be used to find an approximtion of the solution

for the equations with modified coefficients. From the approximation it is then

possible to find a solution to the desired accuracy by applying Newton's method. The

I-13



equations can then be further modified and the process continued iteratively until the

solutions for the exact equations are found.

I-1%




APPENDIX II
The program operates as follows, then.

1) Initialize, read in values for 8. The Z's are set initially to 1.

2) Compute N =2 -8

k =Zzi"1
i
A=2Zz%
i ii

{ = In, m,
-
i

3) Compute grad ¥ =¥\ + #Z - AN - AZ =V

Compute C = Z v,Z
3 1 1
D=2Zvz; 5
1
F=2Xv.n
. 1 1
1l
E = Z Vini-l
1
m=3v,v
. 1 1
1
B=Zv,vi

L) Compute a, =m - |B|2

o]

L) Compute = (m(C + E) - BD - ﬁF)/ao

o'

= (CE - DF)/ao

c = (m(k + 1) + B + 5 - 48 - 5B - b|® - [Fl?)/a

(=1

= (kE - DA)/a_
e = (ke - IA‘Q)/%
6) Compute b - a? = 1
ST Y
at - 2ab +d = f

These last 3, plus e, are the coefficients of V.




7) Compute B = |n], F = |f]
Compute A = tan™t %%%%
Comput - tapL L(f) /2 A
ompute w = tan ﬁ?f? _ /2

8) Choose gquadrants in which solutions will lie. There are two possible cases,
depending on the amplitude of w.
Do steps 9 - 18 for each of L4 pairs of loeci.

9) Set initial values to B szl .
Set initial approximation to (d,@) for each locus of pair.

10) Set MPH = number of iterstions.

Binitial - Breal
MPH

weanon. - Wwreal
MPH

Set AB

Set Aw

11) Converge on solution for initial B,w.
Do steps 12 - 16 MPH times
Do steps 12 - 15 for each locus of pair.

12) Change B by 2B, ® by ow.

Step off (Ad, A) for change in B,w.

1%) Compare (Ad, AF) to 3 previous values. If the sine of the angle of their
change is large, go to step 1lk. Otherwise, to step 15.

14) If last value of sine was also too large, set MPH to 2 MPE+ 1, and go back
to step 10. Otherwise, set (Ad, A) to last value of (ad, AF), substitute un-
converged value of present point for converged value, and proceed.

15) Converge on new point (d, ¢) by Newton's Method.

16) Test to determine if pair of solutions will disappear; if so, go back to
step 9, for next pair of solutions.

17) Compute ¥ for new solution. Determine if solutions found improve value

of V{. If so, solve new solutions and replace value of ¥ with improved value.

II -2



18)
conditions
19)
Method.
20)
21)
22)
23)
2k)
25)

26)

to step 1.

Test if all pairs of solutions have been found. If not, change initial

and return to step 9.

Correct the root last recorded in step 18 to higher accuracy by Newton's

Find real and imaginary parts of R' from solution of step 19.

Correct R' by translator a: R =R' + &
Correct Z . Z =12 + RV,

Test Y. If ¥ > €, go back to step 1.

v <€, set A= Z, - 8y

Reduce S by synthetic division

s; =8, *As; ., (sO =1)

Test order of S to see if all eigenvalues have been found.

II -3

If not, go
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POITRAN PROGRAM TC FIND THE ©GENVALUES CF AN ARSITRARY MATRIX
DIMENS > vfm 2},H/22),5(8,2),6(2,2,k),L0!2)

STBAUT NG 0 MUITIFLY ™ COMPLEYXY NUMBERS

S'BRCTINE m.m

NONLOCAL V,M7,11,12,MJS,T

W L Ic=1,2

v{My, TT‘—\"M’J,"‘\ VL2, 1) VT, XC UG (T80
vii2,. v vILL,18))
}

SUBROUTINE 10 COMZIML Thl DIFFSREWTIALS NERSED
NEWCN AND C7'Wik PLACES
SUERDULINE DTWFER/N)
NCVLOCAL H, D, o015, X5 1
H(é"-_MU“‘.'D LNJ-H1T)

1(8)=5 :sfa"'9°))

(9)—COSF’2'H 22))
H{LO)=SINF' u&)u{'c‘)
ﬂ(ea) CUbF‘(H”’Z‘)wF 5; )
H{1)=C'D(2,N) *DI2,N;+3VEIS) T 31"
L{(a) ~4'd(e, M'H R)'u E)-R{Zuya{ o
“( _olq(s\l 'E\
H(4)=b'D(2, m)'u' )'319)+ufa2\'5(_.:i¢‘;
(T)=H(1)'B(b)-H(2)575)
RETUEN
“ND
SUSKOUTINE 00 CONVEkfle ONF &4 SCLUTICY FOTHD B GTwa003 O
SUERPCUTINE NTHTON 1)
m: LCZAN %ST, d,v,dpsx,ms,

19) Dlﬁ )"Q'Af .JI". ’ Cfb")"
ﬁ( JrH! 9)-(( I)-H{> ST
H{15)=4'D{2, N) H{ )u/a_\, :1%)'&('}&,}
CALL DIFFFR(N)

m 4 11,2

H(1+10)=03-20 D) (H(1%) 01,400 ) R - 1) YR T)
D{l,N)tL{T,N)% { I+1C»)

IF{H{12)/0/2,N) - RS 1) 2,2,1

mMYL}-nesI) 2,31

RETURN

AN

INFUD J, (VT 1) ,v(1,2),1-1,7), K 3T, ERST, A B G AN 2
WITLALTZE
HY20)=17Co0000000,

DO 2 ra1,J

V{I+20,1)=i

V(4*¢0 P‘ '-

wh ¢_Pl 49

":) l‘ 4\4"1,2

f’T, IC )=

COrrULa NUL

AN 'J.,J

.XJ 5 IL h,c

V{T+20,1C ;A {141, &,-7 .,1)
CMUTE k.,A,l

T=1

RALSER

il -
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DO 6 K=0,2

L2=K'(K-1)"5+30+I

L1=K' [3-K)!5+10+1

M'U::K#h‘.

CALL KMULT

DO 9 I=2,J

COMPUTE GRADIENT V

MU=1I+30

20 8 K=1,2

DO 8 MPH=0,1

L1=I+K'10-MPH

L2: 4h_K-MPH

MUS «- MUS

T=( (MPH+X-1) " (MPH+K-4 )-1) /V(L3,2)

CALL XMULT

COMPUTE B’C,D,E,F)m

Tal

L1=T+30

MU=kL3

D0 9 K=10,30,10

DO 9 MPH=0,1

MU=MU+1

L2a2T+K-MPH

CALL KMULT

COMPUTE aQ,c,e

v(29,1)=v(h8, 1) v (48, 1)-v(49,1) v (k9,1)-v(k9, 2) rv(k9, 2)
V(26,1)=v(48,1)" (V(b1,1)+v(k2,1))e2" (VILT,1) 'V(4b,1)+V(4T,2)
'V(Lh,2))-200v7%2,1)1v(L49,1)-v(42,2)1v(k9,2))-v(L5,1) V(L5,1)
-V(k5,2) v (k45,2)-V(46,1)1v(46,1)-v(46,2) v (46, 2)
V(21,2)=v(h1,1)'v(hj,l)-v(he,l)'v(ha,l)-v(ha,a)'v(ha,a)
COMPUTE COMPLEX COEFFICIENTS a,b,d

DO 17 IC=1,2

IS=3-1C

K=IS-1IC

V(27,IC)=V(48,1)* (V(bk, I )+V(45,1C) )-V(49, IC) * (V(LS, IC)-
kev(hs,2)+v(48,1) rkev(£6,2))
V(28,1C)=V(kk,1)'V(4T,1C)-V(45,1C) 'V(46, IC)-K* (V(Lk,2) 'V (47, IS)
-V(45,2)'v(46,13))

V(25,1C)=V(41,1) 'V(4T,IC)+V(43,1) v (kk,IC)-V (42, IC) " (V(45,2)
+v(56,1))+(v(h6,2)ev(hs5,1)1x)

DIVIDE ALL COEFFICIENTS BY a0

DO 18 Ia21,26

DO 18 IC=1,2

V(I,1C)=V!I,IC) ¥ (29,1)

COMPUTE XSI

XSI=V(26,1)-h*(v(27,7)'v(27,1)+V(27,2)'Vv(2T,2))

COMPUTE ETA ANL f

DO 19 I7=1,2

IS=3-IC

K=IS-1IC

V(23,IC)=K*(V(28, IC)+V(27,2)*v(27,18))-V(2T,1)*V(2T, IC)
v(22,1C)=K* (V{25, IC)-V(27,IC)* (XSI+2' (V(26,1) 'K+V(28,2))))
ouTPUT (V(I,l),V(I,Z),I-ZI,!bQ)

BRANCH OF PROGRAM TO COMPUTE BEST VALUE FOR R
INITIALIZE

MUS=-1

E11)=1
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8\0

(]

QaQ

O&\on\OQ

(@]

COMPUTE A,B,OMEGA,AND F

DO 30 I=22,23

H(I-7)=.5" (A’I‘AN‘F(‘.'fI,2)/V(I,1))+SM(H(11),V(I,1))-1)'
SITWF(H(11),v(I,2)))'1.57079632
H(I-9)-SQR'”F(V(I.1)'V(I.1)+V(I.2)'V(I»2))
H(21)=2'H'13)-H(15)

H(17)=-6.38318528

FIND THE QUADRA™T TN WHICH (-OMBGA) LIES
H(17)=H(1T)+1.570" €32

MUS=-MUS

IF(H(21)+H(1T)) 32,34,33

IF OMEGA IS A MULTIPLE OF PI/2,TT WAS CHANGED SLIGHTLY
TO SIMPLIFY COMPUTATION

H(21)=H(21)+.157079632

IF(MUS) 36,35,35

MUS=-MUS

H(17)=H(17)-1.57079632

COMPUTE APPROXIMATIONS OF SOLUTIONS FOR FIRST PAIR
D(5,1)=0.157079632

D(5,2)=1.41371669

D(6,1)=H(14)

D(6,2)=-H(1k)/H(16)

MAIN LOOP:ONE PASS FOR EACH PAIR OF SOLUTIONS

DO 37 Is=1,4

AT THE BEGINNING OF EACH PASS,MPH IS SET EQUAL 10 MANY.
IF IT BECOMES NECESSARY DURING A PASS, THE VALUE WIILL BE INCREASED
MPH=MANY

MU=-1

SET B TO ITS INITIAL VALUE

H(11)=(H{14 )+ABSF(XSI))* INIT

AFTER THE SECOND PASS, THE INITIAL VALUES ARE SLIGHTY CEARGED
IF (IS-3)5k,53,54

D(6,1)=ABSF{XSI-H(11))

D(5,2)=0.78539806

COMPUTE DELTA OMEGA AKD DELTA B )
n(19)-ABSF(l.h1371669-Ansr(n(17)+n(21)))/vm
H(18)=(H(11)-H(26)) /MPH

i(5)=H(11)

H(6)=-1.413T71669

SET dAND PHI TO THEIR INITIAL APPROXIMATIONS AND
CONVERGE ON SOLUTIONS, USING NEWTON'S METHOD

DO 38 IC=1,2

D0 56 I=1,2

D(I,IC)=MU'D(I+k4, IC)

FOR EACH PASS, THE INITIAL APPROXIMATIONS ARE THE NEGATIVES
OF THOSE OF THE LAST PASS

D(I+k4,IC)=D(I,IC)

CALL NEWTON (IC)

LOOP TO STEP TO DESIRED SOLUTION FOR EACH POINT

DO 40 L1=1,MPH

DO 41 1IC=1,2

CALL DIFFER (IC)

COMPUTE DELTA 4 AND DELTA PHI

DO 58 I=1,2
G(I,Ic.l)-(i--?'l)'(2'D(2.IC)'(3(9)'3(1*2)-8(5)'3(1))'3(18)
-H(21)" (H(22) 'H(I)-H(10) *H(I+2) ) "H(19) ) /H(T)

THE COMPARISON FOR SINES IS LOCKED OUT OF THE FIRST 3 PASSES
IF(L1-bk) 63,62,62

IIT -3



COMPUTE THE SINE OF THE ANGLE OF CHANGE FOR THE LAST
c THREE DELTAS '
62 H(1) )=ABSF(0(I,IC,M)a(1, I, 2)-G(I,IC,3)*G(I,1C,1))
1 /sQrTP((G(I,IC,1)'6(1,IC,1)+a(I,1C,3)'q(1,IC,3))*
2 (6(1,1C,2)'a(1,1C,2)+a(1,IC,b)*G(1,IC,k)))

c SINE TEST-IS THE LOCUS ORDERLY ENOUGH?

IF (ABSF(H(11)/D(I+6,1C))-3) 63,63,61
c IF S0,SET 10 TO 1
63 LO(IC)=1
c REPLACE THE OLD COMPUTED SINE BY THE NEW ONE

D(1+6,1C)=R(11)
c INCREMENT d AND PHI AND STORE THE UNCONVERGED VALUE
65 D(I,IC)=D(I,IC)+a(1,IC,1)

D(I+2, IC)=D( I, IC)
c MOVE THE PAST DELTAS BACK ONE TIME UNIT
Do 58 K“135
L2=5-K
G(I,IC,L?)-G(I, IC,LQ-I)
CONVERGE TO POINT ON LOCUS
CALL NEWION (IC)
ON THE FIRST PASS,THERE IS ONLY ONE SOLUTION BEIY} FOLILOWED
IF (IS-1) 41,90,k1
THE TEST FOR SINE FAILED.SET TRIP FOR NEXT PASS,SET PRESENT DTELTA 10 LAST
DELTA, AND INCREENT THE UNCONVERGED RATHER TEAW THE CONVERGED
VALUE OF THE PRESENT POINT.
IF(LO(IC)) 92,6k,6k
6(1,1C,1)=0(I,1C,2)
D(I,IC)=D(I+2,IC)
LO(IC)=-1 °
Q0TO 65
c IF THE SINE WAS TO0 LARGE FOR TWO SUCCESSIVE STEPS,WE
c SET MPH TO A MUCH LARGER VALUE AND START AGAIN
92 MPH=2'MPH+1

MU=1

QoTO ST
b1 CONT'INUE
c TEST IF THE TWO POINTS ARE TOO CLOSE,AND MUST BE DISCARLED
DO 48 ICel,2
DO 48 I=1,2
IrF (ABSF((D(I,1)-D(I,2))/a(1,1C,1))-3) 90,90,48 Ty
CONTINUE ‘

ao TO 37
c INCREMENT B AND OMBGA
90 B(5)=H(5)-H(18)
4o H(6)=H(6)-H(19)
c TWO SOLUTIONS HAVE BEEN FOUND.COMPUTE PSI
91 DO 37 IC=l,2
CALL DIFFER(IC)
n(ag-n(e, IC)'D(2,1C)* (D(2,IC)*D(2,IC)+H(16)*

B

Q

?SQ aQa

1 H(9)+X3I)+H(1k)'H(22)+v(21,2)
C IS THE NEW PSI BETTER THAN THE OLD?
IF(H(20)-R(8)) 37,37,51
c IF SO, REPLACE THE OLD VALUES WITH THE NEW

51 D(1, IC)=D(I, IC)+R(15)
v(23,1)=D(2, IC)*COBF(D(1, IC
v(23,2)=D(2,IC)*SINF(D(1, IC
H(20)=H(8)

III b
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IF PSI IS SMALL ENOUGH,UMP OUT OF ITERATION

IF (H(20)-EPSI) 55,55,37

CONTINUE

DO 20 IC=1,2

V(22,IC)=V(23,IC)+V(27,IC)

DO 13 IC=1,2

IS=3-1IC

DO 15 Ial,J

CHANGE Z BY ZaZ+R'V

V(I+10,IC)=V(22,1) *V(T+30, IC)+(I3-IC)*V(22,2)'V(I+30, I8 )
IF(H(20)-EPSI) 14,14,3

OUTPUT V(22,1),V(22,2),H(20)

AN EIGENVALUE HAS BEEN FOUND.REDUCE S BY SYNTHETIC DIVISION
v(1,1)=1

12=22

MUS=-1
DO 15 MU=2,J

Ll=I-1

CALL KMULT

J=J-1

Vv(1,1)=0

HAVE ALL EIGENVALUES BEEN FOUND? TF WOT,00 BACK TO BEGINNINC
IF(J) 1,16,1

STOP

END

END
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